The Crystal and Molecular Structures of Bent Bis- π-cyclopentadienyl-Metal Complexes: (a) Bis- π-cyclopentadienyldibromorhenium(V) Tetrafluoroborate, (b) Bis- π-cyclopentadienyldichloromolybdenum(IV), (c) Bis- π-cyclopentadienylhydroxomethylaminomolybdenum(IV) Hexafluorophosphate, (d) Bis- π-cyclopentadienylethylchloromolybdenum(IV), (e) Bis- π-cyclopentadienyldichloroniobium(IV), (f) Bis- π-cyclopentadienyldichloromolybdenum(V) Tetrafluoroborate, (g) μ-Oxo-bis[bis- π-cyclopentadienylchloroniobium(V)] Tetrafluoroborate, (h) Bis- π-cyclopentadienyldichlorozirconium

By Keith Prout, T.Stanley Cameron* and Roger A. Forder and in parts by Stephen R. Critchley, Barry Denton and Graham V. Rees

Chemical Crystallography Laboratory, Oxford University, 9 Parks Road, Oxford, OX 1 3PD, England
(Received 7 May 1974; accepted 10 May 1974)

Abstract

The molecular structure and chemical bonding in bent bis- π-cyclopentadienyl-metal complexes is discussed with reference to known structures and to the crystal and molecular structures of the title compounds which were determined by X-ray diffraction techniques from diffractometer intensity measurements. (a) $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ReBr}_{2}\right] \mathrm{BF}_{4}$, orthorhombic, $a=9.50, b=9.38, c=7.03 \AA$, space group Pmmn, 690 reflexions, $R=0.068$; (b) $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}$, monoclinic, $a=13.29, b=12.09, c=12.99 \AA$, $\gamma=106 \cdot 9^{\circ}$, space group $P 2_{1} / b, 2101$ reflexions, $R=0.068$; (c) $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{CH}_{3}\right] \mathrm{PF}_{0}$, monoclinic, $a=9.98, b=13.07, c=10.88 \AA, \gamma=100.4^{\circ}$, space group $P 2_{1} / n, 2138$ reflexions, $R=0.049$; (d) $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{Cl}$, monoclinic, $a=8 \cdot 66, b=13 \cdot 87, c=10 \cdot 94 \AA, \gamma=120 \cdot 1^{\circ}$, space group $P 2_{1} / b, 1560$ reflexions, $R=0.050$; $(e)\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2}$, monoclinic, $a=13 \cdot 74, b=12 \cdot 21, c=13 \cdot 16 \AA, \gamma=107 \cdot 7^{\circ}$, space group $P 2_{1} / b, 2832$ reflexions, $R=0 \cdot 068$; $(f)\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}\right] \mathrm{BF}_{4}$, orthorhombic, $a=9 \cdot 55, b=9 \cdot 34$, $c=6.79 \AA$, space group Pmmn, 639 reflexions, $R=0.026 ;(g)\left\{\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}\right]_{2} \mathrm{O}\right\}\left(\mathrm{BF}_{4}\right)_{2}$, orthorhombic, $a=11 \cdot 15, b=8 \cdot 12, c=12.93 \AA$, space group Pnn2, 1293 reflexions, $R=0.030$; $(h)\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}$, triclinic, $a=14.06, b=8.09, c=13.15 \AA, \alpha=113.7, \beta=117.9, \gamma=99.5^{\circ}$, space group $P \overline{1}, 3478$ reflexions, $R=0.095$.

There are two apparently conflicting descriptions of the electronic structure and bonding in bent (twisted) bis- π-cyclopentadienyl-metal complexes, particularly with reference to the role of the non-bonding d electrons. The earlier model of Ballhausen \& Dahl (1961) was conditioned by the need to explain the acid-base properties of the bis- π-cyclopentadienyl metal hydrides. A hybridization scheme was postulated with nine mutually orthogonal hybrid orbitals in three sets of three. Two of these sets interact with the bis- π-cyclopentadienyl ligands and the third is in a plane at right-angles to that containing the normals to the cyclopentadienyl rings at the metal atom [Fig. 1(a)]. It is this third set that is said to be available for bonding to further ligands. If a group of complexes, say $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MX}_{2}$ ($\mathrm{M}=\mathrm{Zr}, \mathrm{Nb}, \mathrm{Mo}$), is considered, then the orbitals $\psi_{A^{\prime}}$, and $\psi_{C},[$ Fig. $1(a)]$ presumably engage in bonding to the ligands X and the 0,1 or 2 non-bonding electrons are accommodated in $\psi_{B^{\prime}}$ which lies between the ligands. The occupancy or use of the Ballhausen ψ_{B}. is

[^0]consistent with a variety of properties of this class of ccmpound, including the formation of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TaH}_{3}$ and $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{3}^{+}$, and the occurrence of metalmetal bonds in, for example,
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mu-\mathrm{SCH}_{3}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{4}$ (Davies \& Kilbourn, 1971).

A later model proposed by Alcock (1967) and conditioned by the observation of a $75^{\circ} \mathrm{CH}_{3}-\mathrm{Re}-\mathrm{CH}_{3}$ angle in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}-\mathrm{CH}_{3}\right) \mathrm{Re}\left(\mathrm{CH}_{3}\right)_{2}$, which was believed to be inconsistent with the occupancy of the Ballhausen $\psi_{B^{\prime}}$, did not amend the proposals for bonding to the π-cyclopentadienyl ligands but formed, with only those orbitals that made up Ballhausen \& Dahl's $\psi_{A^{\prime}} \psi_{B^{\prime}}$ and $\psi_{C^{\prime}}$, a new orbital $\psi_{C^{\prime \prime}}$, with equal lobes in the $+y$ and $-y$ directions. The remaining orbitals formed two hybrids $\psi_{B^{\prime \prime}}$ and $\psi_{A^{\prime \prime}}$, orthogonal to each other and to $\psi_{C^{\prime}}$, directed between x and $-y$ and x and y [Fig. $1(b)]$. This model places the non-bonding electrons outside ligands X in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX}_{2}$ complexes as required by the observed small angles between the methyl ligands and the formation of chelate complexes such as those formed with amino acids, but does not satisfy the needs of the hydride chemistry.

Recently there has been an attempt based on crystallographic and spectroscopic evidence (Green, Green \& Prout, 1972) to combine these two approaches to give a unified model. Here we present the crystallographic evidence in support of this unified model based on studies of the structures of complex molecules or ions of the form $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX}_{2}$ where $\mathrm{M}=\mathrm{Zr}$, Nb , Mo, Re, and X is a monodentate ligand. The crystal structures of eight new compounds are reported.

Experimental

Preparation

Crystalline samples of all compounds were supplied by Dr M. L. H. Green and were prepared by the methods described in the following references:
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ReBr}_{2} \mathrm{BF}_{4}$ and $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2} \mathrm{BF}_{4}$: Cooper \& Green (1967) (as the hexafluorophosphates), $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}$: Cooper \& Green (1967), $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{CH}_{3} \mathrm{PF}_{6}$: Benfield \& Green (1974a), $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{Cl}$: Benfield \& Green (1974b), $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2}$ and $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2} \mathrm{O}\left(\mathrm{BF}_{4}\right)_{2}\right.$: Douglas \& Green (1972). $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}$ was obtained commercially from Alfa Products.

X-ray diffraction measurements

For each compound a survey of the X-ray diffraction pattern was made by oscillation, Weissenberg and precession techniques. For all compounds except $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}$ the cell parameters were refined and X-ray intensities measured on a Hilger and Watts linear diffractometer which had been modified so that in the automatic mode the moving-crystal stationarycounter method was used for both peak and background. All measurements were made with Mo $K \alpha$ radiation and balanced filters. Reflexions with $I<3 \sigma$ were assumed to be 'unobserved' and those with very unequal backgrounds were not included in the structure analysis. The X-ray intensities were corrected for Lorentz and polarization effects but not for absorption or extinction.
A Hilger \& Watts four-circle automatic diffractometer was used for $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}$. The cell dimensions

Fig. 1. Bent bis- π-cyclopentadienyl-metal systems: metal hybrid orbitals available for bonding to monodentate ligands according to (a) Ballhausen \& Dahl (1961) and (b) Alcock (1967).
were refined by a least-squares best fit to 30 reflexions, and X-ray intensities were observed by the balanced filter technique with ordinate analysis. The intensities were corrected for Lorentz and polarization effects, and for absorption by the empirical method of North, Phillips \& Mathews (1968).

Structure determination

All the structures were determined by the heavyatom method using the unsharpened Patterson function to locate the metal atoms.

Refinement was by the least-squares method with either the full normal matrix or a large block approximation when computer limitations made this necessary. When a large block approximation was used the division was into blocks of derivatives of space parameters of chemically identifiable units and similar blocks of derivatives of temperature parameters. All refinements began with unit weights which were replaced by analytical weighting schemes designed to stabilize $\sum w \Delta^{2}$ with respect to ranges in F_{o}. The criteria for a satisfactorily completed analysis were (i) the ratio of the parameter shifts to standard deviations all less than $0 \cdot 5$, (ii) no significant features in the final difference map, (iii) no anomalous values of F_{c} for unobserved or invalid reflexions.

Calculations

Rollett \& Ford's Algol system (Ford, 1969) for the English Electric KDF9 computer was used for all calculations except those for (c) and (d). Of the e two analyses the latter used a system devised by Sheldrick (1972) and the former the X-RAY 70 system of Stewart, Kundell \& Baldwin (1970) both suitably adapted for an ICL 1906A computer. Calculations with Rollett \& Ford's program and X-RAY 70 used atomic scattering factors from International Tables for X-ray Crystallography (1962), and Sheldrick's program those of Cromer \& Waber (1965). All calculations included a correction for the real part of the anomalous dispersion.

Crystal data, results and description of crystal structures

For each complex, copies of the observed structure amplitudes and structure factors calculated from the final atomic parameters are available.*

(a) Bis-r-cyclopentadienyldibromorhenium(V)

 tetrafluoroborate (B.D.) $\dagger$$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ReBr}_{2}\right] \mathrm{BF}_{4}, \quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BBr}_{2} \mathrm{~F}_{4} \mathrm{Re}, \quad M=563 \cdot 0$, orthorhombic, $a=9 \cdot 50$ (1),$b=9 \cdot 38$ (1), $c=7 \cdot 03$ (1) $\AA \AA$,

[^1]$U=626 \AA^{3}$, systematic extinctions, $h k 0: h+k=2 n+1$, space group Pmmn ($D_{2 h}^{13}$, No. 59 , second setting) from the structure analysis, $D_{m}=2.98 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation), $D_{c}=2.98 \mathrm{~g} \mathrm{~cm}^{-3}$ (for $Z=2$), $F(000)=532$, Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$), $\mu=169 \mathrm{~cm}^{-1}$, linear diffractometer data, layers $h k 0$ to $h k 6,690$ independent reflexions significantly above background. Although these crystals are isomorphous with $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2} \mathrm{BF}_{4}$ the two structure determinations were carried out independently from the respective Patterson functions. The rhenium bromide was refined by full-matrix leastsquares, first with isotropic, then with anisotropic temperature factors, to a final R of 0.054 with the weighting scheme $w=\left\{1+\left[\left(\left|F_{0}\right|-36\right) / 18\right]^{2}\right\}^{-1}$.

The final atomic parameters are given in Table 1 and the bond distances and angles in Table 2. The crystals are isostructural with those of bis- π-cyclopentadienyldichloromolybdenum(V) tetrafluoroborate and the molecular dimensions similar except for details discussed below.

(b) Bis- π-cyclopentadienyldichloromolybdenum(IV) (G.V.R.)

$$
\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}, \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{Mo}, \quad M=297 \cdot 0 \text {, mono- }
$$ clinic, $a=13.29$ (2), $b=12.09$ (2), $c=12.99$ (2) $\AA, \gamma=$ $106 \cdot 9(1)^{\circ}, U=1996 \AA^{3}$, systematic extinctions, $h k 0$: $k=2 n+1,00 l: l=2 n+1$, space group $P 2_{1} / b\left(C_{2 h}^{5}\right.$, No. 14 , 1st setting), $D_{m}=1.96 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation), $D_{c}=$ $1 \cdot 97 \mathrm{~g} \mathrm{~cm}^{-3}$ (for $\left.Z=8\right), F(000)=1168$, Mo $K \alpha(\lambda=$ $0.7107 \AA$) radiation, $\mu=17 \mathrm{~cm}^{-1}$, crystal size $0.2 \times$ $0.1 \times 0.6 \mathrm{~mm}$, linear diffractometer data, layers $h k 0$ to $h k 15,2101$ independent reflexions significantly above background.

A complete trial structure was obtained from a Fourier synthesis phased on the molybdenum atom positions deduced from an unsharpened Patterson function. The trial structure was refined by 'large block matrix' least-squares first with isotropic then with anisotropic temperature factors. The matrix was divided into five blocks, one for the derivatives of the scale factor and dummy overall temperature factor, one for those of the space parameters and one each for those of the temperature parameters of the heavy atoms and of the two pairs of π-cyclopentadienyl rings. The refinement terminated at an R of 0.068 with the weighting scheme $w=\left(65 /\left|F_{o}\right|\right)^{2}$ if $\left|F_{o}\right|>65$, otherwise $w=1$.

Table 2. Bis-r-cyclopentadienyldibromorhenium(V) tetrafluoroborate: bond lengths (\AA) and angles (${ }^{\circ}$)

$\mathrm{Re}-\mathrm{Br}$	$2 \cdot 565(5)$	$\mathrm{Re}-\mathrm{C}(2)$	$2.259(10)$
$\mathrm{Re}-\mathrm{C}(1)$	$2 \cdot 207(13)$	$\mathrm{Re}-\mathrm{C}(3)$	$2.283(11)$
$\mathrm{Br}-\mathrm{Re}-\mathrm{Br}^{\prime}$	$82.05(12)$		
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.42(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$108(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.34(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	$1110(2)$
$\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	$1.43(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}\left(2^{\prime}\right)$	$107(2)$
$\mathrm{B}-\mathrm{F}(1)$	$1.36(3)$	$\mathrm{F}(1)-\mathrm{B}-\mathrm{F}(2)$	$109 \cdot 5(1.5)$
$\mathrm{B}-\mathrm{F}(2)$	$1.37(4)$	$\mathrm{F}(1)-\mathrm{B}-\mathrm{F}\left(1^{\prime}\right)$	$109.8(1.5)$

The final atomic parameters are listed in Table 3 and the bond distances and angles in Table 4. The crystal structure (Fig. 2) is built up from discrete molecules. Each asymmetric unit contains two such independent molecules at general positions in the cell each of virtually identical dimensions but differing in conformation. One at $\operatorname{Mo}(1)$ is eclipsed and the other at $\mathrm{Mo}(2)$ is staggered. In the crystal the independent molecules form discrete layers parallel to the bc plane, those at $\operatorname{Mo}(1)$ in the layer at height a and at $\operatorname{Mo(2)}$ in the layer at height $a / 2$ (Fig. 2). The general stereo-

Fig. 2. The structure of bis- π-cyclopentadienyldichloromolybdenum(IV) in projection down \mathbf{b}.

Table 1. Bis- π-cyclopentadienyldibromorhenium(V) tetrafluoroborate:
fractional atomic coordinates and temperature factors

	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
Re	0.25	0.25	$0 \cdot 1951$ (1)	0.009 (1)	0.023 (1)	0.017 (1)	0	0	0
Br	$0 \cdot 25$	$0 \cdot 4292$ (2)	-0.0802 (3)	0.034 (1)	0.045 (1)	0.035 (1)	$0 \cdot 033$ (1)	0	0
C(1)	0.4970 (17)	$0 \cdot 25$	$0 \cdot 1427$ (38)	$0 \cdot 002$ (6)	$0 \cdot 116$ (18)	0.044 (13)		0.003 (11)	0
C(2)	$0 \cdot 4500$ (19)	$0 \cdot 3723$ (17)	$0 \cdot 2567$ (33)	0.031 (7)	0.048 (7)	0.093 (15)	$0 \cdot 024$ (13)	$0 \cdot 051$ (14)	-0.043 (11)
C(3)	$0 \cdot 4028$ (20)	0.3262 (20)	0.4245 (33)	$0 \cdot 028$ (7)	$0 \cdot 090$ (10)	0.039 (13)	-0.053 (17)	-0.017 (13)	$0 \cdot 016$ (12)
B	$0 \cdot 25$	0.75	$0 \cdot 3918$ (46)	0.034 (12)	0.034 (11)	0.023 (15)	0	0	
F(1)	0.25	0.6312 (15)	0.4979 (36)	0.069 (10)	$0 \cdot 042$ (6)	$0 \cdot 109$ (16)	$0 \cdot 045$ (15)	0	0
$F(2)$	$0 \cdot 3665$ (17)	0.75	$0 \cdot 2740$ (29)	0.031 (7)	$0 \cdot 132$ (13)	0.054 (11)	0	$0 \cdot 025$ (12)	0

chemical features of the molecule are typical of a $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX}_{2}$ system and are discussed in relation to the other complexes in a subsequent section.
(c) Bis- π-cyclopentadienylhydroxomethylaminomolybdenum(IV) hexafluorophosphate (S.R.C.)
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{CH}_{3}\right] \mathrm{PF}_{6}, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{MoNOP}$, $M=419 \cdot 2$, monoclinic, $a=9.98$ (1), $b=13.07$ (1), $c=$ $10 \cdot 88$ (1) $\AA, \gamma=100 \cdot 4(1)^{\circ}, U=1398 \AA^{3}$, systematic extinctions, $h k 0: \quad h+k=2 n+1,00 l: l=2 n+1$, space group $P 2_{1} / n\left[C_{2 h}^{5}\right.$, No. 14, non-standard setting, general positions $\left.\pm\left(x, y, z ; \frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z\right)\right], D_{c}=1.99$ (for $Z=4$), $F(000)=872$, Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$), $\mu=8 \mathrm{~cm}^{-1}$, crystal size $0.25 \times 0.25 \times 0 \cdot 1 \mathrm{~mm}$, linear diffractometer data, layers $h k 0-h k 11,2138$ reflexions significantly above background. The position of the molybdenum atom was deduced from an unsharpened Patterson synthesis, and the remaining non-hydrogen atoms located from F_{o} and difference syntheses. The trial structure was refined by full-matrix least-squares methods, first with isotropic then with anisotropic temperature factors for all atoms. The normal matrix was divided into five blocks, one for the derivatives of the scale and dummy overall isotropic temperature parameters and one each for those of the parameters of the π-cyclopentadienyl rings, the molybdenum atom plus remaining ligand atoms and the anion. After two cycles with unit weights, each reflexion was assigned a weight calculated from the expression $w=\left\{1+\left[\left(\left|F_{o}\right|-\right.\right.\right.$ 36) $\left./ 55]^{2}\right\}^{-1}$ (F on an absolute scale), and then two further cycles led to a final R of 0.049 .
The final atomic parameters are given in Table 5 and bond distances and angles in Table 6. The structure consists of discrete $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{CH}_{3}^{+}$
cations and PF_{6}^{-}anions at general positions in the cell (Fig. 3), but to a good approximation the cation has $C_{2 v}$ symmetry and the anion O_{h}. The planar π-cyclo-

Table 4. Bis-r-cyclopentadienyldichloromolybdenum(IV): bond lengths (\AA) and angles (${ }^{\circ}$)

$\mathrm{Mo}(1)-\mathrm{Cl}(3)$	2.464 (6)	$\mathrm{Cl}(3)-\mathrm{Mo}(1)-\mathrm{Cl}(4)$	$82 \cdot 0$ (0.2)
$\mathrm{Mo}(1)-\mathrm{Cl}(4)$	$2 \cdot 470$ (5)		
$\mathrm{Mo}(1)-\mathrm{C}(31)$	$2 \cdot 27$ (3)	$\mathrm{Mo}(1)-\mathrm{C}(41)$	$2 \cdot 30$ (3)
$\mathrm{Mo}(1)-\mathrm{C}(32)$	$2 \cdot 32$ (3)	$\mathrm{Mo}(1)-\mathrm{C}(42)$	$2 \cdot 29$ (3)
$\mathrm{Mo}(1)-\mathrm{C}(33)$	$2 \cdot 38$ (3)	$\mathrm{Mo}(1)-\mathrm{C}(43)$	$2 \cdot 30$ (3)
$\mathrm{Mo}(1)-\mathrm{C}(34)$	$2 \cdot 32$ (3)	$\mathrm{Mo}(1)-\mathrm{C}(44)$	$2 \cdot 25$ (3)
$\mathrm{Mo}(1)-\mathrm{C}(35)$	$2 \cdot 27$ (3)	$\mathrm{Mo}(1)-\mathrm{C}(45)$	$2 \cdot 27$ (3)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.43 (3)	$\mathrm{C}(41)-\mathrm{C}(42)$	1.44 (6)
$\mathrm{C}(32)-\mathrm{C}(33)$	1.36 (4)	$\mathrm{C}(42)-\mathrm{C}(43)$	1.24 (6)
$\mathrm{C}(33)-\mathrm{C}(34)$	1.25 (5)	C(43)-C(44)	1.35 (6)
C(34)-C(35)	1.47 (4)	C(44)-C(45)	$1 \cdot 40$ (5)
$\mathrm{C}(35)-\mathrm{C}(31)$	1.40 (5)	C(45)-C(41)	$1 \cdot 30$ (5)
$\mathrm{C}(35)-\mathrm{C}(31)-\mathrm{C}(32)$	107 (2)	$\mathrm{C}(45)-\mathrm{C}(41)-\mathrm{C}(42)$	107 (3)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	107 (2)	$\mathrm{C}(41)-\mathrm{C}(42) \mathrm{C}(43)$	108 (4)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	112 (3)	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	111 (4)
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	110 (3)	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	107 (3)
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(31)$	104 (2)	$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(41)$	107 (3)
$\mathrm{Mo}(2)-\mathrm{Cl}(1)$	2.473 (5)	$\mathrm{Cl}(1)-\mathrm{Mo}(2)-\mathrm{Cl}(2)$	82.0 (0.2)
$\mathrm{Mo}(2)-\mathrm{Cl}(2)$	$2 \cdot 477$ (5)		
$\mathrm{Mo}(2)-\mathrm{C}(11)$	$2 \cdot 26$ (2)	Mo (2)-C(21)	$2 \cdot 28$ (3)
$\mathrm{Mo}(2)-\mathrm{C}(12)$	2.32 (3)	$\mathrm{Mo}(2)-\mathrm{C}(22)$	2.27 (3)
$\mathrm{Mo}(2)-\mathrm{C}(13)$	$2 \cdot 30$ (3)	$\mathrm{Mo}(2)-\mathrm{C}(23)$	$2 \cdot 30$ (3)
$\mathrm{Mo}(2)-\mathrm{C}(14)$	$2 \cdot 34$ (3)	$\mathrm{Mo}(2)-\mathrm{C}(24)$	2.37 (3)
$\mathrm{Mo}(2)-\mathrm{C}(15)$	$2 \cdot 27$ (3)	$\mathrm{Mo}(2)-\mathrm{C}(25)$	2.34 (3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.41 (4)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.52 (6)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.41 (4)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.41 (5)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.35 (4)	C(23)-C(24)	$1 \cdot 30$ (5)
C(14)-C(15)	$1 \cdot 34$ (4)	C(24)-C(25)	1.39 (5)
$\mathrm{C}(15)-\mathrm{C}(11)$	$1 \cdot 41$ (4)	C(25)-C(21)	$1 \cdot 33$ (5)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	105 (2)	$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	105 (3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	107 (2)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	102 (3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	109 (3)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	113 (3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	109 (3)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	107 (3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$	110 (3)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	112 (3)

Table 3. Bis- π-cyclopentadienyldichloromolybdenum(IV): fractional atomic coordinates and temperature factors

		y/b						$2 U_{31}$	$2 U_{12}$
	0.0336	- 2820 (1)	$0 \cdot 2091$ (1)	. 018 (1)	0.032 (1)	26	0.006	0.001	. 015 (1)
(1)	0.0369 (3)						-0.012 (3)		
(2)	$0 \cdot 1109$ (3)	$0 \cdot 4058$ (4)	0.0604 (4)	$0 \cdot 038$ (2)	$0 \cdot 044$ (3)	0.043 (3)	0.014 (4)	0.006 (4)	. 028 (4)
(1)	$0 \cdot 1183$ (18)	0.1909 (18)	$0 \cdot 3152$ (18)	$0 \cdot 062$ (14)	0.056 (12)	0.047 (13)	0.002	0.072	$0 \cdot 030$ (21)
12)	0.0852 (16)	$0 \cdot 2691$ (26)	$0 \cdot 3780$ (20)	0.041 (11)	0.122 (22)	0.061 (16)	-0.019 (3)	0.051 (21)	
13)	$0 \cdot 1368$ (19)	$0 \cdot 3812$ (23)	$0 \cdot 3412$ (21)	0.064 (14)	0.091 (18)	0.073	-0.108	-0.096 (27)	0.101 (27)
C(14)	$0 \cdot 2044$ (18)	0.3730 (22)	$0 \cdot 2663$ (25)	0.052 (13)	0.067 (15)	0.106 (24)	0.080 (3	0.096	(23)
15)	0.1936 (15)	$0 \cdot 2610$ (24)	$0 \cdot 2479$ (17)	0.030 (9)	$0 \cdot 127$ (21	$0 \cdot 042$ (12)	0.050 (26)	0.049	0.073 (24)
(21)	0.1376 (14)	0.1877 (23)	0.2477 (29)	$0 \cdot 004$ (9)	0.098 (18)	0.164 (3)	0.095	0.050	$0 \cdot 02$
	0.0988 (17)								
23)	0.0843 (18)	0.3846 (24)	$0 \cdot 2402$ (28)	0.047 (13)	0.093 (19)	$0 \cdot 125$ (28)	0.029 (3)	-0.058	
(24)	-0.1080 (18)	$0 \cdot 3459$ (28)	$0 \cdot 1470$ (24)	0.037 (12)	0.136 (23)	$0 \cdot 094$ (2)	0.134	0.025	0.10
25)	-0.1407 (17)	$0 \cdot 2262$ (30)	$0 \cdot 1523$ (28)	0.030 (12)		(27)	-0.180	-0.074 (29)	
o(1)	0.5265 (1)	0.2579 (1)	$0 \cdot 4980$ (1)	0.022 (1)	0.035 (1)	0.026 (1)	-0.002	-0.003 (1)	. 018 (1)
	0.5843 (4)	3961 (4)	0.6407 (4)	0.054 (3)	0.042 (3)	0.042 (3)	-0.018 (4)	-0.001 (4)	0.006 (4)
	0.5466 (4)	$0 \cdot 1196$ (4)	6308 (4)	0.047 (2)	0.042 (3)	0.040 (3)	0.008 (4)	-0.014 (4)	037
(31)	$0 \cdot 5862$ (16)	$0 \cdot 2684$ (17)	$0 \cdot 3334$ (15)	$0 \cdot 062$ (12)	0.054 (12)	0.027 (10)	0.025 (17)	0.002 (17)	0.033 (19)
32)	0.6388 (16)	$0 \cdot 3766$ (20)	$0 \cdot 3807$ (20)	0.044 (11)	0.071 (15)	0.076 (17)	0.047 (26)	0.079 (23)	0.007 (21)
33)	0.7041 (16)	3542 (24)	$0 \cdot 4534$ (19)	$0 \cdot 037$ (11)	0.104 (18)	0.051 (14)	-0.039 (26)	0.045 (20)	0.001 (22)
34)	0.6949 (14)	$0 \cdot 2486$ (29)	0.4613 (23)	0.022 (9)	0.143 (24)	0.092 (20)	0.111 (38)	0.012 (22)	$0 \cdot 053$ (24)
35)	$0 \cdot 6189$ (15)	$0 \cdot 1829$ (17)	$0 \cdot 3847$ (18)	0.041 (11)	0.055 (11)	0.066 (15)	-0.037 (2	0.099 (21)	0.025 (17)
(4)	$0 \cdot 3896$ (14)	2732 (32)	$0 \cdot 3960$ (17)	0.016 (9)	0.208 (32)	0.036 (12)	0.034	-0.022 (15)	0
(42)	0.3714 (16)	0.1539 (31)	$0 \cdot 4241$ (35)	0.023 (11)	$0 \cdot 126$ (24)	$0 \cdot 175$ (38)	-0.184 (51)	-0.046 (34)	0.020 (27)
(43)	$0 \cdot 3555$ (18)	$0 \cdot 1452$ (21)	0.5185 (33)	0.042 (12)	0.045 (13)	0.182 (35)	0.115 (37)	-0.043 (35)	0.022 (20)
(44)	$0 \cdot 3673$ (14)	$0 \cdot 2500$ (33)	0.5614 (17)	0.014 (8)	0.221 (33)	0.037 (12)	0.007 (32)	0.015 (15)	
(45)	(16)	299 (20)	88 (2	(11)	0.092 (15)	0.074 (17)	078 (27)	-0.004 (21)	0.099 (22)

Table 5. Bis-л-cyclopentadienylhydroxomethylaminomolybdenum(IV) hexafluorophosphate: fractional atomic coordinates and temperature factors

	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{13}$	$2 U_{12}$
Mo	$0 \cdot 1730$ (1)	-0.0978 (1)	$0 \cdot 1489$ (1)	0.024 (1)	0.021 (1)	0.039 (1)	$0 \cdot 005$ (1)	-0.006 (1)	$0 \cdot 000$ (1)
$\mathrm{O}(1)$	0.0174 (5)	-0.1250 (4)	0.0234 (6)	0.037 (3)	0.032 (2)	0.056 (4)	$0 \cdot 000$ (4)	-0.032 (4)	$0 \cdot 000$ (4)
N(1)	0.0367 (6)	0.0123 (4)	$0 \cdot 1855$ (6)	0.039 (3)	0.031 (3)	0.043 (4)	0.004 (4)	-0.010 (4)	0.018 (4)
C(1)	0.0756 (10)	0.0988 (6)	$0 \cdot 2752$ (9)	0.065 (5)	0.033 (4)	0.059 (6)	-0.016 (6)	-0.018 (8)	0.026 (6)
C(11)	$0 \cdot 2829$ (8)	-0.0388	-0.0394 (9)	0.036 (4)	0.060 (5)	0.051 (6)	-0.018 (8)	-0.018 (6)	$0 \cdot 000$ (6)
C(12)	$0 \cdot 2758$ (8)	0.0433 (6)	0.0395 (10)	0.044 (4)	0.038 (4)	0.074 (7)	0.040 (3)	0.036 (8)	0.002 (6)
C(13)	$0 \cdot 3499$ (8)	0.0324 (6)	$0 \cdot 1483$ (10)	0.045 (4)	$0 \cdot 044$ (4)	0.060 (6)	-0.020 (8)	0.010 (8)	-0.032 (6)
C(14)	$0 \cdot 3994$ (7)	-0.0589 (7)	$0 \cdot 1354$ (10)	0.028 (3)	0.061 (4)	0.061 (6)	0.028 (8)	0.008 (6)	-0.002 (6)
C(15)	$0 \cdot 3552$ (8)	$-0 \cdot 1056$	0.0206 (9)	0.041 (4)	0.052 (4)	0.053 (6)	$0 \cdot 000$ (8)	0.020 (8)	0.020 (6)
C(21)	0.2241 (10)	-0.1530 (6)	$0 \cdot 3467$ (10)	0.072 (6)	0.047 (4)	0.049 (6)	0.042 (8)	$-0.010(10)$	$0 \cdot 010$ (8)
C(22)	$0 \cdot 2472$ (9)	-0.2243 (6)	$0 \cdot 2586$ (10)	0.046 (4)	0.046 (4)	0.078 (7)	0.054 (8)	$0 \cdot 000$ (8)	0.026 (8)
C(23)	$0 \cdot 1236$ (9)	-0.2671 (5)	$0 \cdot 1969$ (9)	0.062 (5)	0.024 (4)	0.064 (6)	0.026 (6)	0.002 (8)	0.012 (6)
C(24)	0.0276 (8)	-0.2160 (6)	0.2552 (10)	0.036 (4)	0.041 (4)	0.074 (7)	0.060 (8)	0.016 (8)	-0.006 (6)
C(25)	0.0886 (10)	-0.1499 (6)	$0 \cdot 3455$ (10)	0.080 (6)	0.042 (4)	0.050 (5)	0.042 (8)	0.026 (10)	0.044 (8)
P	0.1889 (2)	0.3977 (2)	$0 \cdot 0970$ (2)	0.036 (1)	0.037 (1)	0.047 (1)	-0.010 (2)	0.004 (2)	0.008 (2)
F(1)	$0 \cdot 1290$ (7)	0.4929 (4)	$0 \cdot 1401$ (9)	0.097 (4)	0.043 (3)	$0 \cdot 138$ (7)	-0.018 (8)	0.030 (10)	0.040 (6)
F(2)	$0 \cdot 0473$ (5)	$0 \cdot 3261$ (4)	$0 \cdot 1227$ (7)	0.052 (3)	0.060 (3)	$0 \cdot 106$ (6)	-0.014 (6)	0.046 (6)	-0.016
$\mathrm{F}(3)$	0.2473 (6)	$0 \cdot 3001$ (4)	0.0596 (8)	0.068 (4)	0.058 (3)	$0 \cdot 127$ (6)	-0.044	0.036 (8)	0.044 (6)
F(4)	$0 \cdot 3300$ (6)	$0 \cdot 4669$ (5)	0.0720 (8)	0.055 (3)	0.079 (4)	$0 \cdot 110$ (6)	0.004 (8)	0.008 (8)	-0.038 (6)
F(5)	$0 \cdot 2332$ (7)	$0 \cdot 3807$ (5)	0.2339 (7)	$0 \cdot 100$ (5)	$0 \cdot 100$ (5)	0.059 (5)	0.002 (6)	-0.030 (8)	0.026 (8)
F (6)	$0 \cdot 1477$ (7)	$0 \cdot 4135$ (6)	-0.0405 (7)	$0 \cdot 075$ (4)	$0 \cdot 127$ (5)	$0 \cdot 059$ (4)	-0.026 (8)	0.028 (6)	0.004 (8)

Table 6. Bis-r-cyclopentadienylhydroxamethylaminomolybdenum(IV) hexafluorophosphate: bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

Mo-N	$2 \cdot 188$ (6)	$\mathrm{N}-\mathrm{C}(1) \quad 1$	1.491 (10)
Mo-O	$2 \cdot 050$ (5)	$\mathrm{Mo}-\mathrm{N}-\mathrm{C}(1) \quad 12$	$120 \cdot 7$ (0.5)
$\mathrm{N}-\mathrm{Mo}-\mathrm{O}$	$72 \cdot 2(0 \cdot 2)$		
Mo-C(11)	$2 \cdot 39$ (1)	Mo-C(21) 2	$2 \cdot 36$ (1)
Mo-C(12)	$2 \cdot 28$ (1)	$\mathrm{Mo}-\mathrm{C}(22) \quad 2$	$2 \cdot 27$ (1)
Mo-C(13)	$2 \cdot 22$ (1)	Mo-C(23) 2	$2 \cdot 24$ (1)
Mo-C(14)	$2 \cdot 23$ (1)	Mo-C(24) 2	$2 \cdot 24$ (1)
Mo-C(15)	2.31 (1)	$\mathrm{Mo}-\mathrm{C}(25) \quad 2$	$2 \cdot 35$ (1)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 39$ (2)	$\mathrm{C}(21)-\mathrm{C}(22) \quad 1$.	$1 \cdot 39$ (2)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 42$ (2)	$\mathrm{C}(22)-\mathrm{C}(23) \quad 1$.	$1 \cdot 43$ (2)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.38 (2)	$\mathrm{C}(23)-\mathrm{C}(24) \quad 1$	$1 \cdot 41$ (2)
C(14)-C(15)	1.43 (2)	$\mathrm{C}(24)-\mathrm{C}(25) \quad 1$	1.38 (2)
C(15)-C(11)	1.39 (2)	$\mathrm{C}(25)-\mathrm{C}(26) \quad 1$.	$1 \cdot 36$ (2)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$) 107 (1)	$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	2) 108 (1)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	110 (1)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	3) 111 (1)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	106 (1)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	4) 102 (1)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	(109 (1)	C(23)-C(24)-C(25)) 111 (1)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$) 107 (1)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$) 109 (1)
P-F(1)	1.55 (1)	P-F(4) 1	1.55 (1)
$\mathrm{P}-\mathrm{F}(2)$	1.57 (1)	$\mathrm{P}-\mathrm{F}(5) \quad 1$	1.58 (1)
P-F(3)	$1 \cdot 55$ (1)	$\mathrm{P}-\mathrm{F}(6) \quad 1$	1.58 (1)
$\mathrm{F}(1)-\mathrm{P}-\mathrm{F}(2)$	89.3 (0.3)	$\mathrm{F}(2)-\mathrm{P}-\mathrm{F}(6)$	$91 \cdot 1(0 \cdot 4)$
$\mathrm{F}(1)-\mathrm{P}-\mathrm{F}(3)$	$177 \cdot 4$ (0.5)	$\mathrm{F}(3)-\mathrm{P}-\mathrm{F}(4)$	$89 \cdot 8(0 \cdot 3)$
$\mathrm{F}(1)-\mathrm{P}-\mathrm{F}(4)$	91.6 (0.4)	$\mathrm{F}(3)-\mathrm{P}-\mathrm{F}(5)$	88.6 (0.4)
$\mathrm{F}(1)-\mathrm{P}-\mathrm{F}(5)$	89.2 (0.5)	$\mathrm{F}(3)-\mathrm{P}-\mathrm{F}(6)$	$90 \cdot 2(0 \cdot 4)$
$\mathrm{F}(1)-\mathrm{P}-\mathrm{F}(6)$	$92 \cdot 0$ (0.5)	$\mathrm{F}(4)-\mathrm{P}-\mathrm{F}(5)$	90.0 (0.4)
$\mathrm{F}(2)-\mathrm{P}-\mathrm{F}(3)$	89.3 (0.3)	$\mathrm{F}(4)-\mathrm{P}-\mathrm{F}(6)$	89.3 (0.4)
F (2)-P-F(4)	179.1 (0.4)	$\mathrm{F}(5)-\mathrm{P}-\mathrm{F}$ (6) 1	$178.6(0 \cdot 4)$
$\mathrm{F}(2)-\mathrm{P}-\mathrm{F}(5)$	89.6 (0.4)		

pentadienyl ligands have a staggered conformation (Fig. 9). The Mo-O ($2 \cdot 05 \AA$) and Mo-N ($2 \cdot 19 \AA$) distances are comparable with the corresponding distances and angles in bis- π-cyclopentadienylmolybdenum amino acid complexes (Prout, Allison, Delbaere \& Gore, 1972). The carbon atom of the N-methyl group lies only $0.2 \AA$ out of the $\mathrm{N}-\mathrm{Mo}-\mathrm{O}$ plane; presumably much greater deviations than this would result in un-
acceptedly close contacts between the hydrogen atoms of the methyl group and those of one of the rings.
There are no short intermolecular contacts corresponding to $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$, or $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds; however, the possibility of an intramolecular hydrogen bond at the short ($2 \cdot 50 \AA$) intramolecular $\mathrm{O} \cdots \mathrm{N}$ contact cannot be ruled out, although the possible hydrogen atom positions are geometrically unsatisfactory.

(d) Bis-т-cyclopentadienylethylchloromolybdenum(IV)

 (R.A.F.)$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{Cl}, \quad \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClMo}, \quad M=290 \cdot 6$, monoclinic, $a=8.66$ (1), $b=13.87(1), c=10 \cdot 94$ (2) $\AA, \gamma=$ $120 \cdot 1(2)^{\circ}, U=1137 \AA^{3}$, systematic extinctions, $h k 0: k=$ $2 n+1,00 l: l=2 n+1$, space group $P 2_{1} / b\left(C_{2 h}^{5}\right.$, No. 14, 1st setting), $D_{m}=1.70 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation), $D_{c}=1.70 \mathrm{~g}$ cm^{-3} (for $Z=4$), $F(000)=584$. Mo $K \alpha$ radiation ($\lambda=$ $0.7107 \AA$), $\mu=13 \mathrm{~cm}^{-1}$, crystal size $0.2 \times 0.6 \times 0.2 \mathrm{~mm}$, linear diffractometer data, layers $h 01-h 14 l, 1560$ reflexions significantly above background.
The position of the molybdenum atom was deduced from an unsharpened Patterson function and the re-

Fig. 3. The structure of bis- π-cyclopentadienylhydroxomethylaminomolybdenum(IV) hexafluorophosphate in projection down c.
maining non-hydrogen atoms from F_{o} and difference syntheses. The trial structure was refined by the fullmatrix least-squares method first with isotropic, then with anisotropic temperature factors and the weighting scheme $w=\left(20+\left|F_{o}\right|\right)^{-1}$. The final R was 0.050 .

The final atomic parameters are given in Table 7 and bond distances and angles in Table 8. The crystal structure consists of discrete $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{Cl}) \mathrm{C}_{2} \mathrm{H}_{5}$ units at general positions in the cell (Fig. 4) but the symmetry of the metal coordination sphere approximates to $C_{2 v}$. The planar π-cyclopentadienyl rings have the staggered conformation. The molybdenum-chlorine bond ($2.50 \AA$) is not greatly different in length from that found in the dichloride $[2.47 \AA$ (mean)] and the molyb-denum-carbon σ-bond length ($2.28 \AA$) is similar to those found in other molybdenum compounds, e.g. $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{NO})\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) 2 \cdot 29 \AA$ (Calderon, Cotton \& Legzdins, 1969), $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{C}_{2} \mathrm{H}_{5} 2 \cdot 40 \AA$ (Bennett \& Mason, 1963), $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{CH}_{2} \mathrm{COOH} 2 \cdot 36 \AA$ (Ariyaratne, Bierrum, Green, Ishaq, Prout \& Swanwick, 1969). The difference in the Mo-C and $\mathrm{Mo}-\mathrm{Cl}$ bond lengths is approximately the same as the difference in the carbon and chlorine covalent radii.

Fig. 4. The structure of bis- π-cyclopentadienylethylchloromolybdenum(IV) in projection down c.

Table 8. Bis- π-cyclopentadienylethylchloromolybdenum (IV) : bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Mo}-\mathrm{Cl} \quad 2$	$2 \cdot 500$ (5)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.54 (2)
$\mathrm{Mo}-\mathrm{C}(1) \quad 2$	$2 \cdot 284$ (10)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Mo}$	117 (1)
$\mathrm{Cl}-\mathrm{Mo}-\mathrm{C}(1) \quad 78$	78.9 (0.4)		
Mo-C(11)	$2 \cdot 30$ (1)	Mo-C(21)	$2 \cdot 29$ (1)
Mo-C(12)	$2 \cdot 36$ (1)	$\mathrm{Mo}-\mathrm{C}(22)$	$2 \cdot 30$ (1)
Mo-C(13)	$2 \cdot 36$ (1)	Mo-C(23)	$2 \cdot 29$ (1)
Mo-C(14)	$2 \cdot 27$ (1)	Mo-C(24)	$2 \cdot 30$ (2)
Mo-C(15)	$2 \cdot 25$ (1)	$\mathrm{Mo}-\mathrm{C}(25)$	$2 \cdot 28$ (1)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 42$ (2)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.40 (2)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 38$ (2)	$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 38$ (2)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 37$ (2)	C(23)-C(24)	$1 \cdot 37$ (3)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.45 (2)	C(24)-C(25)	$1 \cdot 20$ (4)
$\mathrm{C}(15)-\mathrm{C}(11)$	1.42 (2)	C(25)-C(21)	$1 \cdot 40$ (3)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	2) 105 (1)	$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	105 (2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	(3) 111 (1)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	105 (1)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	4) 109 (1)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	108 (2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	5) 107 (1)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	110 (2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$	1) 109 (1)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	112 (2)

(G.V.R.)

$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2}, \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{Nb}, \quad M=294 \cdot 0$, monoclinic, $a=13 \cdot 74$ (2), $b=12.21$ (2), $c=13 \cdot 16$ (2), $\gamma=$ $107 \cdot 7(1)^{\circ}, U=2103 \AA^{3}$, systematic extinctions, $h k 0$: $k=2 n+1,00 l: l=2 n+1$, space group $P 2_{1} / b\left(C_{2 h}^{5}\right.$, No. 14,1 st setting), $D_{m}=1.84 \mathrm{~g} \mathrm{~cm}^{-1}$ (by flotation), $D_{c}=$ $1.86 \mathrm{~g} \mathrm{~cm}^{-1}$ (for $Z=8$), $F(000)=1160$, Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$), $\mu=16 \mathrm{~cm}^{-1}$, crystal size $0.2 \times 0.1 \times$ 0.4 mm , linear diffractometer data, layers $h k 0-h k 15$, 2832 reflexions significantly above background.

Although the crystals were isomorphous with the corresponding molybdenum compound, the structure was determined independently by the heavy-atom method from the Patterson function. The refinement used the 'large block matrix' least-squares method with the same blocking scheme as for the dichloride. The anisotropic refinement converged at an R of 0.068 with the weighing scheme $w=\left\{\left(1+\left[\left(\left|F_{o}\right|-65\right) / 26\right]^{2}\right\}^{-1}\right.$.

The final atomic parameters are given in Table 9 and the bond distances and angles in Table 10. The crystals are isostructural with those of the molybdenum dichloride and the molecular dimensions differ only in the fine detail discussed later.

Table 7. Bis- π-cyclopentadienylethylchloromolybdenum(IV): fractional atomic coordinates and temperature factors

	x, a	y / b	z/c	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Mo	$0 \cdot 24352$ (8)	$0 \cdot 44985$ (5)	$0 \cdot 20747$ (5)	0.0515 (4)	0.0425 (4)	0.0415	-0.0006	0.0089 (3)	0206 (3)
Cl	$0 \cdot 3154$ (4)	0.6229 (2)	$0 \cdot 0919$ (2)	0.092 (2)	0.057 (1)	0.082 (2)	017 (1)	-0.009 (1)	0.033 (1)
C(1)	0.0116 (13)	0.4744 (10)	$0 \cdot 2646$ (10)	0.075 (6)	0.071 (7)	0.091 (7)	-0.007 (5)	-0.004 (5)	$0 \cdot 042$ (5)
C(2)	-0.1319 (16)	0.3847 (13)	$0 \cdot 3475$ (13)	0.086 (7)	$0 \cdot 116$ (11)	$0 \cdot 109$ (9)	-0.001 (8)	$0 \cdot 022$ (7)	$0 \cdot 046$ (7)
C(11)	0.2766 (15)	$0 \cdot 3652$ (9)	$0 \cdot 0366$ (9)	0.093 (7)	0.070 (7)	0.066 (6)	-0.025 (5)	0.004 (5)	0.028 (6)
C(12)	$0 \cdot 1276$ (18)	0.3783 (11)	$0 \cdot 0124$ (9)	0.123 (9)	0.089 (8)	$0 \cdot 056$ (5)	-0.026 (5)	-0.038 (6)	0.047 (7)
C(13)	-0.0069 (15)	$0 \cdot 3188$ (11)	$0 \cdot 0955$ (11)	0.087 (7)	0.091 (9)	0.084 (7)	-0.041 (6)	-0.032 (6)	0.034 (6)
C(14)	0.0471 (14)	$0 \cdot 2661$ (8)	0.1761 (10)	0.089 (7)	0.040 (5)	0.089 (7)	-0.012 (4)	-0.006 (6)	0.012 (5)
C(15)	$0 \cdot 2239$ (15)	$0 \cdot 2912$ (9)	0.1377 (11)	0.090 (7)	0.061 (6)	0.099 (8)	-0.019 (5)	-0.017 (6)	0.034 (5)
C(21)	$0 \cdot 3633$ (25)	0.5591 (12)	$0 \cdot 3768$ (13)	$0 \cdot 184$ (14)	0.086 (9)	0.091 (8)	-0.051 (7)	-0.089 (9)	0.084 (9)
(22)	$0 \cdot 2822$ (15)	0.4484 (12)	$0 \cdot 4155$ (8)	0.091 (7)	$0 \cdot 125$ (11)	0.046 (5)	0.015 (5)	-0.021 (4)	0.048 (7)
(23)	$0 \cdot 3784$ (29)	$0 \cdot 4057$ (14)	$0 \cdot 3598$ (16)	$0 \cdot 184$ (16)	$0 \cdot 114$ (11)	$0 \cdot 117$ (12	-0.039 (9)	-0.103 (11)	$0 \cdot 105$ (12)
C (24)	0.5117 (32)	0.4894 (40)	0.2931 (21)	$0 \cdot 114$ (14)	$0 \cdot 425$ (55)	0.092 (13)	-0.053 (23)	-0.035 (11)	$0 \cdot 166$ (26)
C(25)	$0 \cdot 5042$ (29)	0.5729 (24)	$0 \cdot 3021$ (21)	$0 \cdot 092$ (13)	$0 \cdot 208$ (23)	$0 \cdot 102$ (16	0.078 (16)	-0.063 (12)	$0 \cdot 065$ (14)

Table 9. Bis- π-cyclopentadienyldichloroniobium(IV): fractional atomic coordinates and temperature factors

	x / a	y / b	z/c	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{13}$	$2 U_{12}$
Nb (1)	$0 \cdot 5274$ (1)	$0 \cdot 2562$ (1)	$0 \cdot 4997$ (1)	0.0266 (4)	$0 \cdot 0423$ (5)	0	-0.0015 (8)	-0.0022 (8)	$0 \cdot 0195$ (7)
$\mathrm{Nb}(2)$	0.0360 (1)	$0 \cdot 2847$ (1)	0.2030 (1)	$0 \cdot 0250$ (4)	0.0386 (5)	$0 \cdot 0289$ (-0.0064 (8)	-0.0003 (8)	0.0245 (7)
$\mathrm{Cl}(1)$	0.0366 (3)	$0 \cdot 1257$ (3)	0.0875 (2)	0.051 (2)	0.037 (2)	0.037 (2)	-0.021 (2)	-0.007 (3)	0.035 (3)
$\mathrm{Cl}(2)$	$0 \cdot 1092$ (2)	$0 \cdot 4123$ (3)	0.0579 (2)	0.045 (2)	0.043 (2)	0.044 (2)	-0.025 (3)	-0.006	0.025 (3)
$\mathrm{Cl}(3)$	0.5750 (3)	$0 \cdot 3992$ (3)	0.6375 (3)	0.078 (3)	$0 \cdot 044$ (2)	0.042 (2)	-0.023 (3)	$0 \cdot 004$ (3)	-0.0011 (3)
$\mathrm{Cl}(4)$	$0 \cdot 5439$ (3)	$0 \cdot 1156$ (3)	$0 \cdot 6289$ (3)	0.051 (2)	0.049 (2)	$0 \cdot 040$ (2)	-0.017 (3)	0.004 (3)	$0 \cdot 044$ (3)
C(11)	$0 \cdot 1306$ (12)	$0 \cdot 1981$ (13)	$0 \cdot 3118$ (13)	0.065 (10)	$0 \cdot 053$ (9)	0.074 (11)	0.030 (15)	-0.050 (17)	0.053 (15)
C(12)	0.0945 (12)	$0 \cdot 2660$ (21)	$0 \cdot 3717$ (11)	0.041 (8)	$0 \cdot 162$ (19)	$0 \cdot 030$ (8)	0.040 (19)	- 0.009 (12)	0.050 (20)
C(13)	$0 \cdot 1339$ (17)	$0 \cdot 3787$ (20)	$0 \cdot 3430$ (17)	$0 \cdot 101$ (16)	$0 \cdot 102$ (15)	0.091 (16)	$-0 \cdot 121$ (26)	-0.123 (26)	$0 \cdot 122$ (27)
C(14)	$0 \cdot 2048$ (15)	$0 \cdot 3788$ (22)	$0 \cdot 2674$ (18)	0.067 (12)	$0 \cdot 127$ (19)	$0 \cdot 100$	$0 \cdot 101$ (29)	-0.128 (22)	-0.087 (25)
C(15)	$0 \cdot 1981$ (11)	$0 \cdot 2682$ (18)	$0 \cdot 2478$ (13)	$0 \cdot 028$ (7)	$0 \cdot 124$ (15)	0.055 (9)	-0.035 (19)	-0.020 (13)	0.064 (18)
C(21)	-0.1384 (12)	$0 \cdot 1890$ (17)	$0 \cdot 2314$ (30)	$0 \cdot 024$ (8)	$0 \cdot 068$ (12)	$0 \cdot 264$	$0 \cdot 114$ (32)	0.087 (29)	$0 \cdot 026$ (16)
$\mathrm{C}(22)$	-0.1075 (14)	$0 \cdot 2730$ (38)	$0 \cdot 3011$ (14)	0.043 (11)	$0 \cdot 343$ (46)	0.041 (9)	0.068 (34)) 0.064 (17)	$0 \cdot 219$ (39)
C(23)	-0.0876 (16)	$0 \cdot 3661$ (29)	$0 \cdot 2619$ (36)	0.053 (12)	$0 \cdot 147$ (28)	$0 \cdot 252$	-0.313 (62)	$-0.060(42)$	$0 \cdot 086$ (31)
C(24)	$-0 \cdot 1053$ (14)	$0 \cdot 3558$ (25)	$0 \cdot 1652$ (30)	0.043 (10)	$0 \cdot 128$ (19)	$0 \cdot 241$	$0 \cdot 224$ (45)	0.115 (33)	$0 \cdot 131$ (25)
C(25)	-0.1363 (12)	$0 \cdot 2423$ (26)	$0 \cdot 1447$ (15)	0.033 (8)	$0 \cdot 173$ (24)	$0 \cdot 073$	-0.084 (27)	$-0.035(15)$	$0 \cdot 101$ (25)
C(31)	0.5968 (10)	0.2796 (16)	0.3311 (10)	0.038 (7)	0.104 (14)	0.029 (7)	0.019 (14)	0.006 (10)	$0 \cdot 018$ (15)
C(32)	$0 \cdot 6432$ (16)	0.3787 (17)	0.3831 (19)	0.074 (13)	0.094 (14)	$0 \cdot 119$ (19)	0.094 (26)	$0 \cdot 138(27)$	$0 \cdot 046$ (22)
C(33)	0.7036 (13)	$0 \cdot 3527$ (27)	0.4584 (17)	0.038 (9)	$0 \cdot 201$ (27)	0.070 (13)	-0.090 (32)) 0.033 (17)	-0.026 (24)
C(34)	0.6949 (14)	$0 \cdot 2398$ (24)	0.4573 (15)	0.057 (11)	$0 \cdot 203$ (24)	0.072 (1	$0 \cdot 127$ (29)	0.080 (19)	$0 \cdot 197$ (30)
C(35)	0.6266 (14)	$0 \cdot 1878$ (16)	$0 \cdot 3804$ (15)	0.073 (11)	0.081 (12)	0.086	-0.024 (20)	$0 \cdot 119$ (21)	$0 \cdot 018$ (19)
C(41)	$0 \cdot 3905$ (12)	$0 \cdot 2729$ (24)	$0 \cdot 3974$ (15)	0.032 (8)	$0 \cdot 193$ (23)	0.060	0.063 (26)	$0 \cdot 005$ (15)	$0 \cdot 097$ (24)
C(42)	$0 \cdot 3743$ (13)	$0 \cdot 1586$ (27)	0.4106 (26)	0.043 (10)	$0 \cdot 167$ (25)	0.205 (2	-0.266 (46)	-0.112 (28)	$0 \cdot 135$ (28)
C(43)	$0 \cdot 3556$ (11)	$0 \cdot 1367$ (22)	$0 \cdot 5113$ (26)	0.022 (8)	$0 \cdot 129$ (18)	$0 \cdot 184$ (28)	$0 \cdot 198$ (39)	-0.041 (25)	-0.017 (20)
C(44)	0.3596 (11)	0.2357 (28)	$0 \cdot 5580$ (14)	0.024 (7)	$0 \cdot 226$ (28)	0.059 (11)	-0.039 (28)	$-0.008(14)$	0.078 (24)
C(45)	$0 \cdot 3782$ (13)	$0 \cdot 3183$ (17)	$0 \cdot 4844$ (19)	$0 \cdot 052$ (9)	$0 \cdot 084$ (12)	$0 \cdot 127$ (18)	$-0.007(25)$	$-0.009(21)$	0.086 (18)

Table 10. Bis- π-cyclopentadienyldichloroniobium (IV): bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Nb}(1)-\mathrm{Cl}(3) \quad 2$	$2 \cdot 464$ (5)	$\mathrm{Cl}(3)-\mathrm{Nb}(1)-\mathrm{Cl}(4)$	$85 \cdot 7$ (0.2)
$\mathrm{Nb}(1)-\mathrm{Cl}(4) \quad 2$	$2 \cdot 475$ (4)		
$\mathrm{Nb}(1)-\mathrm{C}(31)$	$2 \cdot 40$ (3)	$\mathrm{Nb}(1)-\mathrm{C}(41)$	$2 \cdot 37$ (3)
$\mathrm{Nb}(1)-\mathrm{C}(32)$	$2 \cdot 38$ (3)	$\mathrm{Nb}(1)-\mathrm{C}(42)$	$2 \cdot 39$ (3)
$\mathrm{Nb}(1)-\mathrm{C}(33)$	$2 \cdot 41$ (3)	$\mathrm{Nb}(1)-\mathrm{C}(43)$	$2 \cdot 37$ (3)
$\mathrm{Nb}(1)-\mathrm{C}(34)$	$2 \cdot 44$ (3)	$\mathrm{Nb}(1)-\mathrm{C}(44)$	$2 \cdot 37$ (3)
$\mathrm{Nb}(1)-\mathrm{C}(35)$	$2 \cdot 39$ (3)	$\mathrm{Nb}(1)-\mathrm{C}(45)$	$2 \cdot 40$ (3)
$\mathrm{C}(31)-\mathrm{C}(32)$	1.37 (3)	$\mathrm{C}(41)-\mathrm{C}(42)$	$1 \cdot 36$ (4)
$\mathrm{C}(32)-\mathrm{C}(33)$	$1 \cdot 39$ (4)	C(42)-C(43)	$1 \cdot 36$ (4)
C(33)-C(34)	$1 \cdot 35$ (5)	C(43)-C(44)	$1 \cdot 34$ (4)
$\mathrm{C}(34)-\mathrm{C}(35)$	$1 \cdot 40$ (4)	C(44)-C(45)	$1 \cdot 37$ (5)
C(35)-C(31)	1.46 (3)	C(45)-C(41)	$1 \cdot 31$ (5)
$\mathrm{C}(35)-\mathrm{C}(31)-\mathrm{C}(32)$) 107 (2)	$\mathrm{C}(45)-\mathrm{C}(41)-\mathrm{C}(42)$) 109 (3)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$) 108 (2)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	(3) 107 (3)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	111(3)	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$) 108 (2)
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$) 108 (3)	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$) 107 (3)
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(31)$) 106 (2)	C(44)-C(45)-C(41)) 109 (3)
$\mathrm{Nb}(2)-\mathrm{Cl}(1)$	$2 \cdot 468$ (4)	$\mathrm{Cl}(1)-\mathrm{Nb}(2)-\mathrm{Cl}(2) 85$	$85 \cdot 5(0 \cdot 1)$
$\mathrm{Nb}(2)-\mathrm{Cl}(2)$	2.476 (3)		
$\mathrm{Nb}(2)-\mathrm{C}(11)$	2.39 (2)	Nb (2)-C(21)	$2 \cdot 36$ (3)
$\mathrm{Nb}(2)-\mathrm{C}(12)$	$2 \cdot 40$ (3)	Nb (2)-C(22)	$2 \cdot 33$ (4)
$\mathrm{Nb}(2)-\mathrm{C}(13)$	$2 \cdot 36$ (2)	$\mathrm{Nb}(2)-\mathrm{C}(23)$	$2 \cdot 35$ (4)
$\mathrm{Nb}(2)-\mathrm{C}(14)$	$2 \cdot 41$ (3)	$\mathrm{Nb}(2)-\mathrm{C}(24)$	$2 \cdot 41$ (3)
$\mathrm{Nb}(2)-\mathrm{C}(15)$	$2 \cdot 37$ (2)	$\mathrm{Nb}(2)-\mathrm{C}(25)$	2.39 (3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.34 (3)	$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 35$ (6)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.37 (4)	$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 20$ (7)
C(13)-C(14)	$1 \cdot 39$ (4)	C(23)-C(24)	$1 \cdot 30$ (6)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.35 (4)	C(24)-C(25)	$1 \cdot 35$ (5)
$\mathrm{C}(15)-\mathrm{C}(11)$	1.35 (3)	C(25)-C(21)	1.31 (5)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$) 107 (2)	$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$) 105 (4)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	111 (2)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$) 111 (4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	105 (2)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$) 110 (5)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$) 108 (2)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$) 107 (4)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$	110 (2)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$) 107 (3)

(f) Bis- π-cyclopentadienyldichloromolybdenum(V) tetrafluoroborate (T.S.C. and B.D.)

$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}\right] \mathrm{BF}_{4}, \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BCl}_{2} \mathrm{~F}_{4} \mathrm{Mo}, \quad M=383 \cdot 8$, orthorhombic, $a=9.55$ (1), $b=9.34$ (1), $c=6.79$ (1) \AA,
$U=606 \AA^{3}$, systematic extinctions, $h k 0: h+k=2 n+1$, space group Pmmn ($D_{2 h}^{13}$, No. 59, 2nd setting; from the structure analysis), $D_{m}=2.06 \mathrm{~g} \mathrm{~cm}^{-3}$ (by flotation), $D_{c}=$ $2.06 \mathrm{~g} \mathrm{~cm}^{-3}$ (for $Z=2$), $F(000)=374$, Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$), $\mu=17 \mathrm{~cm}^{-1}$, linear diffractometer data, layers $h k 0-h k 6,539$ independent reflexions significantly above background.

The structure was determined from the Patterson function. Each cation, sited at the intersection of a pair of orthogonal mirror planes in the space group Pmmn, has crystallographic $m m$ symmetry (Fig. 5). The π-cy-

Fig. 5. The structure of bis- π-cyclopentadienyldichloromolybdenum(V) tetrafluoroborate in projection down \mathbf{c}.
clopentadienyl ligands are therefore necessarily equivalent and in the eclipsed conformation. Each possesses a mirror plane at right angles to the ligand plane with the carbon atom in the mirror pointing towards the chlorine ligands [i.e. opposite to the arrangement in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$ (Mason \& Gerloch, 1965)]. The BF_{4}^{-} ions also have mm crystallographic symmetry but do not differ significantly from 43 m .
The trial structure was refined by the full-matrix least-squares method first with isotropic, then with anisotropic temperature factors to $R=0.031$. At this stage, peaks attributed to hydrogen atoms were clearly defined in the difference synthesis but were closer to the carbon sites than expected in X-ray work. The hydrogen atoms were placed at $0.95 \AA$ (Cotton \& Takats, 1970) from the carbon atoms (notwithstanding the known internuclear separation of $1 \cdot 1 \AA$) and refined with Waser (1963) type constraints (Rollett, 1969). The hydrogen atoms were given an isotropic temperature factor of $0.06 \AA^{2}$ which was not refined. The final R was 0.026 for the weighting scheme $w=$ $\left\{1+\left[\left(\left|F_{\rho}\right|-73 / 52\right]^{2}\right\}^{-1}\right.$.
The final atomic parameters are given in Table 11 and the bond distances and angles in Table 12. The crystals are isostructural with those of the rhenium dibromide salt and the molecular dimensions differ only in the fine detail discussed later.
(g) μ-Oxo-bis[bis- π-cyclopentadienylchloroniobium $(\mathrm{V})]$ tetrafluoroborate (B.D.)
$\left\{\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2} \mathrm{O}\right\}\left(\mathrm{BF}_{4}\right)_{2}, \quad \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{8} \mathrm{Nb}_{2} \mathrm{O}\right.$, $M=706 \cdot 7$, orthorhombic, $a=11.55$ (1), $b=8.12$ (1), $c=12.93$ (1) $\AA, U=1364 \AA^{3}$, systematic extinctions, $0 k l: k+l=2 n+1, h 0 l: h+l=2 n+1$, space group Pnn 2 ($C_{2 v}^{10}$, No. 34) from the structure analysis, $D_{m}=1.835 \mathrm{~g}$ cm^{-3} (by flotation), $D_{c}=1.837 \mathrm{~g} \mathrm{~cm}^{-3}$ (for $Z=2$), $F(000)=692$, Mo $K \alpha$ radiation $(\lambda=0.7107 \AA$), $\mu=11$ cm^{-1}, linear diffractometer data, layers $h k 0-h k 12,1293$ independent reflexions significantly above background.
The niobium atoms were located from an unsharpened Patterson function. The heavy-atom-phased F_{o} map, which had Pnnm symmetry, exhibited a number of large peaks, one of which could be interpreted as a chlorine atom if the space group were Pnn2. Proceed-

Table 12. Bis-r-cyclopentadienyldichloromolybdenum(V) tetrafluoroborate: bond lengths (\AA) and angles (${ }^{\circ}$)

$\mathrm{Mo}-\mathrm{Cl}$	$2 \cdot 382(4)$	$\mathrm{Mo}-\mathrm{C}(1)$	$2 \cdot 296(9)$
$\mathrm{Cl}-\mathrm{Mo}-\mathrm{Cl}^{\prime}$	$87 \cdot 9(1)$	$\mathrm{Mo}-\mathrm{C}(2)$	$2 \cdot 329(6)$
		$\mathrm{Mo}-\mathrm{C}(3)$	$2 \cdot 305(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 392(11)$		
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.364(9)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$106 \cdot 8(6)$
$\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	$1.394(9)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	$108 \cdot 6(5)$
$\mathrm{B}-\mathrm{F}(1)$		$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}\left(2^{\prime}\right)$	$109 \cdot 0(5)$
$\mathrm{B}-\mathrm{F}(2)$	$1 \cdot 356(12)$		
	$1.365(12)$	$\mathrm{F}(1)-\mathrm{B}-\mathrm{F}(2)$	$108 \cdot 9(8)$
		$\mathrm{F}(1)-\mathrm{B}-\mathrm{F}\left(1^{\prime}\right)$	$111 \cdot 0(8)$

ing on this assumption, the remaining atoms other than hydrogen were located from successive F_{o} syntheses. The trial model was refined by full-matrix leastsquares methods with isotropic then anisotropic temperature factors. A difference synthesis calculated at $R=0.032$ showed clearly defined peaks indicative of hydrogen atom positions but too close to the carbon atoms. Hydrogen atoms were introduced in calculated positions and refined with Waser (1963) type constraints (Rollett, 1969). The final R was 0.030 with the weighting scheme $w=\left\{1+\left[\left(\left|F_{o}\right|-80\right) / 79\right]^{2}\right\}^{-1}$.

The final atomic parameters are given in Table 13 and bond distances and angles in Table 14. In the crystal (Fig. 6) the BF_{4}^{-}anions lie on twofold axes at Wyckoff (a) and (b) (International Tables for X-ray Crystallography, 1962) and approximate to regular tetrahedra. The cations also have twofold symmetry with the bridging oxygen atom at Wyckoff (a) roughly halfway between the anions. The $\mathrm{Nb}-\mathrm{O}-\mathrm{Nb}$ bridge is significantly non-linear $\left(169^{\circ}\right)$, and the $\mathrm{Nb}-\mathrm{O}$ bonds ($1.876 \AA$) shorter than the expected single-bond value $2 \cdot 10-2 \cdot 15 \AA$ but larger than the terminal double bond $\mathrm{Nb}=0 \sim 1 \cdot 70 \AA$. The length is comparable with the niobium-ethoxy-oxygen bond $(1.87 \AA)$ in (dipy) $\mathrm{Nb}(\mathrm{O})(\mathrm{OEt}) \mathrm{Cl}_{2}$ (Prout \& Kamenar, 1970). The relatively short bond must indicate a certain degree of π-bonding and it might be assumed that the lowestenergy vacant orbital of the apparently $16 e$ complex must have the symmetry required for π-bonding. In this case the $\mathrm{Cl}-\mathrm{Nb}-\mathrm{O}-\mathrm{Nb}-\mathrm{Cl}$ system would be noncoplanar with a 90° angle between the two $\mathrm{Cl}-\mathrm{Nb}-\mathrm{O}$

Table 11. Bis- π-cyclopentadienyldichloromolybdenum(V) tetrafluoroborate: fractional coordinates and temperature factors

	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
Mo	$0 \cdot 2500$	0.2500	$0 \cdot 1830$ (1)	0.015 (1)	0.023 (1)	0.019 (1)	0	0	0
Cl	$0 \cdot 2500$	$0 \cdot 4272$ (2)	-0.0696 (2)	0.045 (1)	$0 \cdot 050$ (1)	0.038 (1)	$0 \cdot 041$ (1)	0	0
C(1)	$0 \cdot 4890$ (7)	$0 \cdot 2500$	$0 \cdot 1468$ (13)	0.017 (3)	$0 \cdot 123$ (6)	0.035 (4)	0	0.012 (4)	0
C(2)	$0 \cdot 4565$ (6)	0.3714 (5)	$0 \cdot 2565$ (9)	0.034 (2)	0.053 (2)	0.072 (4)	0.027 (4)	-0.040 (5)	-0.040 (4)
C(3)	$0 \cdot 3994$ (5)	0.3245 (6)	$0 \cdot 4293$ (9)	0.024 (2)	0.081 (3)	0.049 (3)	-0.054 (5)	-0.033 (4)	$0 \cdot 013$ (3)
B	$0 \cdot 2500$	$0 \cdot 7500$	0.3862 (15)	0.027 (4)	0.034 (4)	0.039 (5)	0	0	0
F(1)	$0 \cdot 2500$	$0 \cdot 6310$ (4)	$0 \cdot 5005$ (10)	0.085 (4)	$0 \cdot 048$ (2)	0.091 (4)	$0 \cdot 047$ (4)	0	0
F(2)	$0 \cdot 3678$ (4)	0.7500	$0 \cdot 2727$ (8)	$0 \cdot 040$ (3)	$0 \cdot 129$ (4)	$0 \cdot 047$ (3)	0	$0 \cdot 029$ (4)	0
$\mathrm{H}(1)$	$0 \cdot 509$ (14)	0.2500	0.034 (26)	$0 \cdot 06^{*}$					
$\mathrm{H}(2)$	0.449 (8)	0.037 (7)	$0 \cdot 194$ (13)	0.06 *					
H(3)	0.367 (9)	$0 \cdot 114$ (7)	$0 \cdot 519$ (15)	0.06*					

Table 13. μ-Oxo-bis[bis- π-cyclopentadienylchloroniobium $(\mathrm{V})]$ tetrafluoroborate:
fractional coordinates and temperature factors

	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{13}$	$2 U_{12}$
Nb	0.1591 (1)	0.0411 (1)	0	0.031 (1)	0.031 (1)	0.043 (1)	0	0	-0.001 (2)
Cl	$0 \cdot 1993$ (2)	-0.1874 (4)	$0 \cdot 1083$ (3)	0.068 (2)	0.060 (3)	0.076 (3)	0.043 (3)	-0.031 (6)	$0 \cdot 017$ (9)
\bigcirc	0	0	-0.0135 (8)	0.027 (7)	0.044 (8)	0.058 (13)	,	0	0
C(1)	$0 \cdot 1960$ (7)	0.3329 (9)	0.0222 (7)	0.078 (9)	0.035 (12)	0.045 (11)) -0.008 (13)	$0 \cdot 008$ (13)	$-0.030(12)$
C(2)	$0 \cdot 0881$ (9)	$0 \cdot 3020$ (12)	0.0596 (11)	0.067 (8)	0.039 (7)	$0 \cdot 103$ (5)	-0.063 (10)	$0 \cdot 004$ (12)	$0 \cdot 005$ (10)
C(3)	0.0967 (9)	$0 \cdot 2034$ (13)	$0 \cdot 1458$ (10)	0.076 (7)	0.058 (7)	0.077 (10)	-0.070 (18)	0.022 (13)	-0.015 (12)
C(4)	0.2166 (10)	$0 \cdot 1655$ (16)	$0 \cdot 1660$ (11)	0.071 (8)	0.075 (8)	0.087 (11)	-0.070 (15)	-0.044 (14)	-0.048 (14)
C(5)	$0 \cdot 2729$ (8)	0.2459 (15)	0.0874 (12)	0.046 (6)	0.081 (9)	$0 \cdot 113$ (13)	-0.053 (18)	-0.033 (14)	-0.038 (12)
C(6)	0.3229 (9)	-0.0578 (21)	-0.0921 (16)	0.057 (7)	$0 \cdot 124$ (14)	$0 \cdot 106$ (15)	-0.051 (21)	$0 \cdot 024$ (14)	0.021 (16)
$\mathrm{C}(7)$	0.2361 (12)	-0.1560 (16)	-0.1179 (14)	0.111 (10)	0.050 (8)	0.119 (16)	-0.044 (16)	0.083 (20)	0.039 (15)
C(8)	$0 \cdot 1594$ (9)	-0.0700 (16)	-0.1718 (9)	0.062 (6)	$0 \cdot 106$ (12)	0.045 (7)	-0.064 (13)	0.044 (11)	-0.038 (15)
$\mathrm{C}(9)$	$0 \cdot 1952$ (13)	0.0950 (18)	$-0 \cdot 1754$ (12)	$0 \cdot 104$ (10)	$0 \cdot 104$ (12)	0.063 (11)	0.065 (16)	$0 \cdot 096$ (16)	0.045 (2)
C(10)	$0 \cdot 3029$ (11)	0.0930 (19)	-0.1275 (13)	0.064 (9)	0.099 (11)	$0 \cdot 107$ (14)	$-0.065(20)$	$0 \cdot 104$ (17)	-0.110 (17)
B(1)	$0 \cdot 5000$	$0 \cdot 5000$	-0.0787 (15)	0.083 (8)	0.062 (13)	0.060 (13)	-		0
B(2)	$0 \cdot 5000$	0	0.2686 (20)	0.087 (6)	0.041 (9)	0.112 (18))	0	0
F(1)	$0 \cdot 4899$ (6)	0.6347 (17)	-0.0248 (15)	0.099 (30)	$0 \cdot 170$ (33)	0.296 (17)) 0.236 (12)	-0.014 (7)	0.042 (8)
F(2)	$0 \cdot 5980$ (9)	0.5149 (14)	-0.1346 (10)	$0 \cdot 127$ (13)	0.144 (16)	0.164 (17)	(17) -0.074 (12)	0.136 (8)	-0.094 (11)
F(3)	$0 \cdot 5027$ (8)	$0 \cdot 1359$ (20)	$0 \cdot 2200$ (16)	$0 \cdot 129$ (25)	$0 \cdot 185$ (32)	0.282 (19)	$0 \cdot 314$ (16)	0.047 (7)	$-0.004(10)$
F(4)	0.5968 (9)	-0.0041 (16)	0.3243 (11)	$0 \cdot 119$ (16)	$0 \cdot 168$ (19)	$0 \cdot 182$ (19)) -0.094 (14)	-0.157(14)	0.066 (15)

Table 14. μ-Oxo-bis[bis- π-cyclopentadienylchloronio$\operatorname{bium}(\mathrm{V}) \mid$ tetrafluoroborate: bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Nb}-\mathrm{O}$	$1 \cdot 88$ (1)	$\mathrm{Cl}-\mathrm{Nb}-\mathrm{O}$	$96 \cdot 2$ (9)
$\mathrm{Nb}-\mathrm{Cl}$	$2 \cdot 370$ (4)	$\mathrm{Nb}-\mathrm{O}--\mathrm{Nb}$	$169 \cdot 3$ (8)
$\mathrm{Nb}-\mathrm{C}(1)$	$2 \cdot 43$ (1)	$\mathrm{Nb}-\mathrm{C}(6)$	$2 \cdot 38$ (2)
$\mathrm{Nb}-\mathrm{C}(2)$	$2 \cdot 40$ (1)	$\mathrm{Nb}-\mathrm{C}(7)$	$2 \cdot 38$ (2)
$\mathrm{Nb}-\mathrm{C}(3)$	$2 \cdot 41$ (1)	$\mathrm{Nb}-\mathrm{C}(8)$	$2 \cdot 40$ (1)
$\mathrm{Nb}-\mathrm{C}(4)$	$2 \cdot 46$ (2)	$\mathrm{Nb}-\mathrm{C}(9)$	2.35 (2)
$\mathrm{Nb}-\mathrm{C}(5)$	$2 \cdot 40$ (2)	$\mathrm{Nb}-\mathrm{C}(10)$	2.38 (2)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 36$ (2)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.33 (3)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 39$ (2)	$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 30$ (3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.43 (2)	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 40$ (2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.39 (2)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.41 (2)
$\mathrm{C}(5)-\mathrm{C}(1)$	1.41 (2)	$\mathrm{C}(10)-\mathrm{C}(6)$	$1 \cdot 30$ (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108 (1)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	110 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	110 (1)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	109 (1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	103 (1)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	103 (1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	112 (1)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(6)$	109 (2)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	107 (1)	$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)$	109 (1)
$\mathrm{B}(1)-\mathrm{F}(1)$	$1 \cdot 30$ (2)	$\mathrm{B}(2)-\mathrm{F}(3)$	$1 \cdot 27$ (3)
$B(1)-F(2)$	$1 \cdot 36$ (3)	$\mathrm{B}(2)-\mathrm{F}(4)$	$1 \cdot 34$ (3)
$\mathrm{F}(1)-\mathrm{B}(1)-\mathrm{F}(2)$	107 (2)	$\mathrm{F}(3)-\mathrm{B}(2)-\mathrm{F}(4)$	106 (2)
$\mathrm{F}(1)-\mathrm{B}(1)-\mathrm{F}\left(1^{\prime}\right)$	116 (2)	$\mathrm{F}(3)-\mathrm{B}(2)-\mathrm{F}\left(3^{\prime}\right)$	111 (2)
$\mathrm{F}(2)-\mathrm{B}(1)-\mathrm{F}\left(2^{\prime}\right)$	114 (2)	$\mathrm{F}(4)-\mathrm{B}(2)-\mathrm{F}\left(4^{\prime}\right)$	114 (2)

planes, enabling one oxygen p-lone pair, say p_{x}, to form a π-bond to one niobium and the other, say p_{y}, to form a similar π-bond to the second niobium atom. The torsional angle $\mathrm{Cl}-\mathrm{Nb} \cdots \mathrm{Nb}^{\prime}-\mathrm{Cl}^{\prime}$ is $72 \cdot 5^{\circ}$.
(h) Bis-r-cyclopentadienyldichlorozirconium (G.V.R.)
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}, \quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{Zr}, \quad M=292 \cdot 3$, triclinic, $a=14.06$ (1), $b=8.09$ (1), $c=13.15$ (1) $\AA, \alpha=113.7$ (1), $\beta=117 \cdot 9$ (1), $\gamma=99.5$ (1) ${ }^{\circ}, U=1089 \AA^{3}$. Crystals frequently twinned, space group $P \overline{1}\left(C_{i}^{1}\right.$, No. 2) from structure determination, $D_{m}=1.76 \mathrm{~g} \mathrm{~cm}^{-3}, D_{c}=1.74 \mathrm{~g}$ cm^{-3} (for $Z=4$), $F(000)=576, \mathrm{Cu} K \alpha$ radiation ($\lambda=$ $1.5418 \AA$), $\mu=124.6 \mathrm{~cm}^{-1}$, crystal size $0.6 \times 0.3 \times 0.2$ mm , 4-circle diffractometer data, 3478 reflexions significantly above background.

The zirconium atoms of the two independent molecules in the cell were located from an unsharpened Patterson function and a trial structure containing all atoms but hydrogen was obtained from subsequent F_{o} syntheses. After three cycles of 'large block matrix' least-squares refinement with isotropic thermal parameters it was found that the thermal parameters of the π-cyclopentadienyl rings associated with $\mathrm{Zr}(2)$ were much higher than those of the rings associated with

Fig. 6. The structure of μ-oxo-bis[bis- π-cyclopentadienylchloroniobium(V)] tetrafluoroborate in projection down \mathbf{b}.
$\mathrm{Zr}(1) . F_{o}$ and difference syntheses indicated that there was some disorder associated with the rings at $\mathrm{Zr}(2)$ and it proved possible to set up a second trial structure with two different arrangements of the bis- π cyclopentadienylzirconium group at $\mathrm{Zr}(2)$ with occupation parameters S and I-S. In the subsequent refinement, neighbouring carbon atoms within each of the disordered π-cyclopentadienyl rings were constrained to lie within $1.41 \pm 0.01 \AA$ of each other (thought with hindsight to have been somewhat too large a value) by the method of Waser (1963) (Rollett, 1969), anisotropic temperature factors were assigned to all atoms other than the carbon atoms of the disordered rings which retained individual isotropic temperature factors, and the site occupation number was refined. The normal matrix was divided into four blocks, one for the derivatives of the scale factor and dummy overall temperature factor, one each for those of the space and temperature parameters of the ordered molecule and one for thoje of the parameters describing the disordered molecule. The refinement converged at an R of 0.095 with the final weighting scheme $w=\{1+$ $\left.\left[\left(\left|F_{o}\right|-11\right) / 20\right]^{2}\right\}^{-1}$.

The final atomic parameters are given in Table 15 and the bond distances and angles in Table 16. In the projection of the crystal structure given in Fig. 7 only
the disordered system with the higher occupation number is shown at $\operatorname{Zr}(2)$. The two crystallographically independent molecules in the asymmetric unit show no significant differences in shape or dimensions and, except in the details discussed later, are essentially similar to other systems described above.

Discussion

All monomeric complexes of the type $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX}_{2}$ have the same general stereochemistry. The complexe; may be thought of as derived from ferrocene by bending the molecule until the planes of the cyclopentadienyl rings are inclined to each other at about 50° and then placing the ligands X in a plane perpendicular to that of the normals to the rings at the metal atom so that the line bisecting the approximately $90^{\circ} \mathrm{X}-\mathrm{M}-\mathrm{X}$ angle also bisects the angle between the ring normals as in Fig. 8. The details of the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX}_{2}$ stereochemistry depend on the nature and valence state of M and the nature of X . These details, which shed light on the electronic structures of the complexes, appear to be best described by the parameters defined in Fig. 8 and enumerated in Table 17.

For those complexes reported here, an examination of the carbon-carbon bond lengths in the π-cyclopen-

Table 15. Bis- π-cyclopentadienyldichlorozirconium: fractional coordinates and temperature factors

	x / a	y / b	z / c	U_{11} or $U_{\text {iso }}$	U_{22}	U_{33}	$2 U_{23}$	$2 U_{13}$	$2 U_{12}$ Occupation number
Zr(1)	0.7382 (1)	$0 \cdot 4566$ (1)	$0 \cdot 3447$ (1)	0.036 (1)	$0 \cdot 025$ (1)	0.037 (1)	0.035 (1)	0.038 (1)	0.025 (1)
$\mathrm{Cl}(1)$	0.5787 (3)	$0 \cdot 4106$ (5)	$0 \cdot 1326$ (3)	0.051 (2)	$0 \cdot 069$ (2)	0.054 (2)	$0 \cdot 072$ (3)	0.038 (3)	$0 \cdot 051$ (3)
$\mathrm{Cl}(2)$	0.8758 (3)	$0 \cdot 4210$ (6)	$0 \cdot 2834$ (4)	$0 \cdot 069$ (2)	$0 \cdot 083$ (2)	0.093 (3)	$0 \cdot 120$ (4)	$0 \cdot 119$ (4)	0.095 (4)
C(11)	$0 \cdot 6200$ (13)	0.0834 (17)	$0 \cdot 2202$ (14)	0.080 (9)	$0 \cdot 028$ (5)	$0 \cdot 062$ (8)	0.045 (11)	0.083 (15)	$0 \cdot 024$ (11)
C(12)	$0 \cdot 5739$ (14)	$0 \cdot 1774$ (22)	$0 \cdot 2881$ (20)	0.074 (9)	0.053 (8)	$0 \cdot 117$ (14)	$0 \cdot 097$ (18)	$0 \cdot 133$ (20)	0.051 (14)
C(13)	$0 \cdot 6603$ (21)	$0 \cdot 2835$ (21)	0.4265 (21)	$0 \cdot 176$ (20)	0.037 (7)	$0 \cdot 119$ (15)	0.080 (17)	$0 \cdot 237$ (32)	0.079 (20)
C(14)	$0 \cdot 7658$ (16)	$0 \cdot 2576$ (21)	0.4483 (18)	$0 \cdot 102$ (12)	0.045 (7)	$0 \cdot 093$ (12)	$0 \cdot 101$ (17)	$0 \cdot 102$ (21)	0.041 (16)
C(15)	0.7378 (15)	$0 \cdot 1351$ (21)	$0 \cdot 3219$ (16)	$0 \cdot 090$ (11)	0.048 (7)	0.072 (9)	0.070 (14)	0.094 (17)	0.074 (15)
$\mathrm{C}(21)$	0.7457 (13)	$0 \cdot 7998$ (18)	0.4348 (15)	0.063 (8)	0.038 (6)	0.071 (9)	0.060 (13)	0.059 (14)	0.035 (11)
C(22)	$0 \cdot 8533$ (13)	$0 \cdot 8226$ (17)	0.4521 (14)	0.075 (9)	0.031 (5)	0.068 (8)	$0 \cdot 050$ (11)	$0 \cdot 082$ (15)	0.032 (11)
C(23)	0.9157 (13)	0.7792 (21)	$0 \cdot 5529$ (17)	$0 \cdot 048$ (7)	$0 \cdot 042$ (7)	0.074 (10)	0.023 (14)	0.000 (14)	0.016 (12)
C(24)	0.8393 (18)	0.7279 (20)	$0 \cdot 5885$ (15)	$0 \cdot 120$ (14)	0.037 (7)	0.049 (8)	0.028 (12)	0.073 (18)	0.044 (16)
C(25)	$0 \cdot 7328$ (15)	0.7361 (19)	0.5114 (17)	$0 \cdot 099$ (11)	0.036 (6)	0.081 (10)	$0 \cdot 044$ (13)	$0 \cdot 121$ (19)	0.054 (14)
Zr(2)	0.2345 (1)	0.4521 (1)	$0 \cdot 1220$ (1)	0.035 (1)	$0 \cdot 028$ (1)	0.036	0.028 (1)	0.038 (1)	0.025 (1)
$\mathrm{Cl}(3)$	0.0777 (3)	0.4366 (6)	$0 \cdot 1563$ (4)	0.051 (2)	$0 \cdot 077$ (2)	0.068 (2)	0.078 (4)	0.077 (3)	0.061 (3)
Cl(4)	$0 \cdot 3565$ (4)	0.3815 (6)	$0 \cdot 2902$ (4)	0.083 (2)	0.091 (3)	$0 \cdot 064$ (2)	$0 \cdot 105$ (4)	$0 \cdot 092$ (4)	$0 \cdot 121$ (4)
C(31)	$0 \cdot 3592$ (38)	$0 \cdot 7221$ (61)	$0 \cdot 1287$ (49)	0.053 (12)					$0 \cdot 34$ (4)
C(32)	$0 \cdot 2565$ (46)	0.7507 (57)	$0 \cdot 1057$ (38)	0.052 (11)					$0 \cdot 34$ (4)
C(33)	$0 \cdot 2616$ (23)	0.8067 (74)	$0 \cdot 2250$ (48)	$0 \cdot 054$ (13)					0.34 (4)
C(34)	$0 \cdot 3673$ (45)	$0 \cdot 8133$ (49)	$0 \cdot 3225$ (39)	0.049 (11)					$0 \cdot 34$ (4)
C(35)	$0 \cdot 4274$ (30)	$0 \cdot 7615$ (67)	0.2626 (39)	$0 \cdot 053$ (11)					$0 \cdot 34$ (4)
C(41)	$0 \cdot 0816$ (42)	0.0979 (57)	-0.0785	0.050 (11)					$0 \cdot 28$ (4)
C(42)	$0 \cdot 1956$ (30)	$0 \cdot 1015$ (60)	-0.0298 (31)	$0 \cdot 041$ (11)					$0 \cdot 28$ (4)
C(43)	$0 \cdot 2560$ (31)	$0 \cdot 2297$ (59)	$-0.0492(50)$	0.051 (11)					$0 \cdot 28$ (4)
C(44)	$0 \cdot 1747$ (39)	$0 \cdot 2895$ (56)	-0.1223 (25)	0.039 (10)					$0 \cdot 28$ (4)
C(45)	$0 \cdot 0719$ (24)	$0 \cdot 2246$ (62)	-0.1279 (46)	$0 \cdot 042$ (11)					$0 \cdot 28$ (4)
C(51)	$0 \cdot 3009$ (21)	0.7232 (27)	0.0929 (14)	0.051 (5)					$0 \cdot 66$ (4)
C(52)	$0 \cdot 2462$ (13)	0.7843 (32)	$0 \cdot 1585$ (25)	0.054 (6)					$0 \cdot 66$ (4)
C(53)	$0 \cdot 3162$ (23)	$0 \cdot 8206$ (30)	$0 \cdot 2913$ (21)	0.053 (5)					$0 \cdot 66$ (4)
C(54)	$0 \cdot 4164$ (17)	0.7859 (35)	$0 \cdot 3078$ (18)	0.061 (6)					0.66 (4)
C(55)	$0 \cdot 4058$ (18)	0.7212 (30)	$0 \cdot 1845$ (26)	0.054 (6)					$0 \cdot 66$ (4)
C(61)	$0 \cdot 1319$ (22)	0.0770 (24)	$-0.0481(20)$	0.054 (5)					$0 \cdot 72$ (4)
C(62)	$0 \cdot 2402$ (16)	$0 \cdot 1485$ (34)	$-0.0310(20)$	0.058 (5)					$0 \cdot 72$ (4)
C(63)	$0 \cdot 2333$ (19)	$0 \cdot 2724$ (29)	-0.0825 (24)	$0 \cdot 060$ (6)					0.72 (4)
C(64)	$0 \cdot 1216$ (23)	$0 \cdot 2790$ (29)	$-0.1301(20)$	0.062 (6)					$0 \cdot 72$ (4)
C(65)	$0 \cdot 0585$ (12)	$0 \cdot 1568$ (35)	$-0.1096(21)$	$0 \cdot 059$ (5)					$0 \cdot 72$ (4)

Table 16. Bis- π-cyclopentadienyldichlorozirconium(IV): bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Zr}(1)-\mathrm{Cl}(1)$	$2 \cdot 446$ (5)	$\mathrm{Cl}(1)-\mathrm{Zr}(1)-\mathrm{Cl}(2)$	$97 \cdot 1$ (2)
$\mathrm{Zr}(1)-\mathrm{Cl}(2)$	2.436 (5)		
$\mathrm{Zr}(1)-\mathrm{C}(11)$	2.53 (2)	$\mathrm{Zr}(1)-\mathrm{C}(21)$	$2 \cdot 50$ (2)
$\mathrm{Zr}(1)-\mathrm{C}(12)$	2.51 (3)	$\mathrm{Zr}(1)-\mathrm{C}(22)$	2.51 (2)
$\mathrm{Zr}(1)-\mathrm{C}(13)$	$2 \cdot 48$ (3)	$\mathrm{Zr}(1)-\mathrm{C}(23)$	$2 \cdot 50$ (2)
$\mathrm{Zr}(1)-\mathrm{C}(14)$	$2 \cdot 46$ (2)	$\mathrm{Zr}(1)-\mathrm{C}(24)$	$2 \cdot 48$ (3)
$\mathrm{Zr}(1)-\mathrm{C}(15)$	$2 \cdot 49$ (2)	$\mathrm{Zr}(1)-\mathrm{C}(25)$	$2 \cdot 48$ (2)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 40$ (3)	$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 39$ (3)
C(12)-C(13)	1.36 (4)	$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 43$ (3)
C(13)-C(14)	1.44 (4)	$\mathrm{C}(23)-\mathrm{C}(24)$	$1 \cdot 42$ (3)
C(14)-C(15)	$1 \cdot 35$ (3)	$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 39$ (3)
C(15)-C(11)	$1 \cdot 40$ (3)	$\mathrm{C}(25)-\mathrm{C}(21)$	$1 \cdot 37$ (3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	109 (2)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	105 (2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	108 (2)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	107 (2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	107 (2)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	109 (2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$	110 (2)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	106 (2)
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	107 (2)	$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	113 (2)
$\mathrm{Zr}(2)-\mathrm{Cl}(3)$	2.442 (5)	$\mathrm{Cl}(3)-\mathrm{Zr}(2)-\mathrm{Cl}(4)$	97.2 (2)
$\mathrm{Zr}(2)-\mathrm{Cl}(4)$	2.439 (5)		
$\mathrm{Zr}(2)-\mathrm{C}(31)$	$2 \cdot 51$ (6)	$\mathrm{Zr}(2)-\mathrm{C}(41)$	$2 \cdot 52$ (4)
$\mathrm{Zr}(2)-\mathrm{C}(32)$	$2 \cdot 49$ (5)	$\mathrm{Zr}(2)-\mathrm{C}(42)$	$2 \cdot 50$ (4)
$\mathrm{Zr}(2)-\mathrm{C}(33)$	$2 \cdot 50$ (7)	$\mathbf{Z r}(2)-\mathbf{C}(43)$	$2 \cdot 44$ (5)
$\mathrm{Zr}(2)-\mathrm{C}(34)$	2.53 (6)	$\mathrm{Zr}(2)-\mathrm{C}(44)$	$2 \cdot 54$ (4)
$\mathrm{Zr}(2)-\mathrm{C}(35)$	$2 \cdot 53$ (6)	$\mathrm{Zr}(2)-\mathrm{C}(45)$	$2 \cdot 48$ (4)
$\mathrm{Zr}(2)-\mathrm{C}(51)$	$2 \cdot 48$ (3)	$\mathrm{Zr}(2)-\mathrm{C}(61)$	$2 \cdot 52$ (3)
$\mathrm{Zr}(2)-\mathrm{C}(52)$	$2 \cdot 50$ (3)	$\mathrm{Zr}(2)-\mathrm{C}(62)$	2.52 (3)
Zr (2)-C(53)	2.51 (3)	$\mathrm{Zr}(2)-\mathrm{C}(63)$	$2 \cdot 48$ (3)
Zr(2)-C(54)	2.52 (3)	$\mathrm{Zr}(2)-\mathrm{C}(64)$	2.47 (4)
$\mathrm{Zr}(2)-\mathrm{C}(55)$	2.49 (4)	$\mathrm{Zr}(2)-\mathrm{C}(65)$	$2 \cdot 50$ (3)
$\mathrm{C}(31)-\mathrm{C}(32)$	$1 \cdot 41$ (4)	C(41)-C(42)	$1 \cdot 41$ (8)
C(32)-C(33)	1.41 (4)	C(42)-C(43)	$1 \cdot 41$ (8)
C(33)-C(34)	$1 \cdot 41$ (5)	C(43)-C(44)	$1 \cdot 41$ (9)
C(34)-C(35)	$1 \cdot 41$ (4)	C(44)-C(45)	$1 \cdot 41$ (8)
C(35)-C(31)	$1 \cdot 41$ (4)	C(45)-C(41)	$1 \cdot 41$ (8)
C(51)-C(52)	1.41 (5)	C(61)-C(62)	1.41 (9)
C(52)-C(53)	1.41 (5)	C(62)-C(63)	1.41 (9)
C(53)-C(54)	$1 \cdot 41$ (4)	C(63)-C(64)	1.41 (9)
C(54)-C(55)	1.41 (5)	C(64)-C(65)	1.41 (9)
C(55)-C(51)	$1 \cdot 41$ (5)	C(65)-C(61)	$1 \cdot 41$ (9)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	108 (3)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	108 (5)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	108 (3)	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	108 (5)
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	107 (3)	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	108 (5)
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(31)$	109 (3)	$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(41)$	108 (5)
$\mathrm{C}(35)-\mathrm{C}(31)-\mathrm{C}(32)$	108 (3)	$\mathrm{C}(45)-\mathrm{C}(41)-\mathrm{C}(42)$	108 (5)
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	109 (3)	$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(63)$	107 (6)
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	107 (3)	$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(64)$	108 (6)
$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	108 (3)	$\mathrm{C}(63)-\mathrm{C}(64)-\mathrm{C}(65)$	108 (5)
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(51)$	107 (3)	$\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{C}(61)$	108 (5)
$\mathrm{C}(55)-\mathrm{C}(51)-\mathrm{C}(52)$	108 (3)	$\mathrm{C}(65)-\mathrm{C}(61)-\mathrm{C}(62)$	108 (5)

Occupation numbers

$\mathrm{C}(31-35)$	$0 \cdot 71$
$\mathrm{C}(41-45)$	$0 \cdot 28$
$\mathrm{C}(51-55)$	$0 \cdot 66$
$\mathrm{C}(61-65)$	$0 \cdot 34$

tadienyl rings shows that for a given complex the spread of values is not in excess of 3σ in any particular ring, but when all the complexes are considered together, the overall range of values is very large. In any given complex the shorter mean carbon-carbon bond length is associated with the ring with the greater apparent thermal motion as indicated by the anisotropic thermal parameters. However, the failure of these temperature parameters to be adequately represented by rigid-body \mathbf{T} and ω tensors prevented bond-length corrections and suggested that the problem might be
better considered as one of disorder rather than of thermal motion. The difficulty in the interpretation is further aggravated in some cases by the lack of an absorption correction to the primary X-ray intensity measurements. These factors combine to make the study of mean carbon-carbon bond lengths unrewarding. However, it does appear that in the better analyses, where the π-cyclopentadienyl rings are well defined, the mean $\mathrm{C}-\mathrm{C}$ bond lengths are in general longer and, intuitively, might be extrapolated to a value of about $1 \cdot 41 \AA$ in the ideal situation. It is believed therefore that the observed values are not significantly at variance with the value of 1.43 postulated by Wheatley (1967). Unfortunately, consequent upon the geometry of the system, the errors in the positions of the carbon atoms are reflected in the carbon-metal bond lengths to give some apparent correlation of shorter mean carbonmetal contacts with shorter mean carbon-carbon bond lengths. Therefore we have chosen the length of the normal to the π-cyclopentadienyl ring from the metal

Fig. 7. The structure of bis- π-cyclopentadienyldichlorozirconium(IV) in projection down a.

Fig. 8. Definition of the molecular structure parameters used in Table 17.
Table 17. Summary of molecular dimensions of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX} \mathrm{X}_{2}$ systems

atom to represent the comparative sizes of the metal atoms when bonding with the π-cyclopentadienyl groups. When the ligands X are approximately equal in size, this normal intersects the π-cyclopentadienyl ring close to its centroid and has less tendency to contain a component of the ring shrinkage from disorder/ thermal motion than the carbon-metal distance. The lengths of the ring normals indicate that the metal radii with respect to the π-cyclopentadienyl rings (a) increase from the first to the second transition series, $c f .\left[\pi-\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2}\right] \mathrm{TiCl}_{2}, 2.06 \AA$ (Davies \& Bernal, 1971), $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}, 2 \cdot 19 \AA$; (b) remain almost constant from the second to the third transition series, $c f$. $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}, 1.98 \AA,\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}(\mu \mathrm{SPh})_{2} \mathrm{M}(\mathrm{CO})_{4}$, $\mathrm{M}=\mathrm{Cr}$, Mo, W, $1.99 \AA$ (Cameron et al., 1971); (c) decrease acro:s a transition series, cf. $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}, 2 \cdot 19,\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2}, 2 \cdot 09$, $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}, 1.98 \AA$; and (d) are little affected by the oxidation state of the metal atom, cf.
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}, \mathrm{l} \cdot 98,\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}^{+}, \mathrm{l} \cdot 99 \AA$. The angles between the ring normals vary over only a relatively small range and are in general less than 135°, the minimum considered by the Ballhausen or Alcock models for the electronic structures of the complexes. The general trend is that the longer the ring normal lengths the smaller the angles between the normals, suggesting the angle may be to some extent controlled by the mutual repulsions of the hydrogen atoms of the π-cyclopentadienyl ligands at the end of the molecule away from the ligands X. The conformations of the bis- π-cyclopentadienyl systems from this and other work are given in Fig. 9, as projections onto the MX_{2} plane. It has been reported that the repulsion of the rings by the ligands X and interaction between the hydrogen atoms of the π-cyclopentadienyl groups determined whether the conformation of the ring; was eclipsed or staggered (Knox \& Prout, 1969), but later it was shown that the conformation was counter-ion dependent and the choice of conformation was attributed to crystal packing effects (Prout, Allison, Delbaere \& Gore, 1972). Further confirmation of this belief is gained from the present work, where examples of the staggered and eclipsed conformations are to be found in the same crystal in both $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2}$ and $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}$, and in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrX}_{2}$ systems the fluoride and iodide are eclipsed but the chloride is staggered.

The ligands X lie in a plane that is almost or exactly at right angles to that of the ring normals. The line of intersection of the ring-normal plane and the MX_{2} plane roughly bisects the ring-normal and $M X_{2}$ angles, but all the molecules are significantly skew except when the point symmetry of the metal site in the crystal requires an exact bisection. The skewness of the molecule does not obviously relate to the nature of M or X and is presumed to be a function of the crystal packing.

From the values recorded in Table 17, the size of the $\mathrm{X}-\mathrm{M}-\mathrm{X}$ angle is related to the number of non-
bonding electrons in the complex rather than to the nature of the central metal atom. As the number of non-bonding electrons of the metal atom increases so the $\mathrm{X}-\mathrm{M}-\mathrm{X}$ angle decreases. The MX_{2} angles fall into fairly discrete, non-overlapping groups according to the number of non-bonding electrons; $d^{0} 94-97^{\circ}, d^{1}$ $85-88^{\circ}, d^{2} 76-82^{\circ}$, but with a slightly anomalous (too low) value in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{CH}_{3}, 72 \cdot 2^{\circ}$, comparable to that found in certain amino acid chelates (Prout et al., 1972) and possibly due to $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding. The $\mathrm{M}-\mathrm{X}$ bond lengths present a remarkable picture when contrasted with the lengths of the ring normals. If the bonds to chlorine are considered, then for the series of complexes $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MCl}_{2}$ with $\mathrm{M}=\mathrm{Zr}, \mathrm{Nb}$, and Mo the $\mathrm{M}-\mathrm{Cl}$ bond length increases marginally with atomic number from 2.44 to

(a)
(i)

(m)

(b)

(c)

(d)

(g)

(h)

(l)

Fig. 9. Projections of $\left(\pi \mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX}_{2}$ and related systems on to their MX ${ }_{2}$ planes. (a) π-Cyclopentadienyl(methylcyclopentadiene) dimethylrhenium (Alcock, 1967), (b) bis- π-cyclopentadienyldibromorhenium(V) tetrafluoroborate, (c) bis- π-cyclopentadienyldichloromolybdenum(IV) at Mo(1), and (d) at $\mathrm{Mo}(2)$, (e) bis- π-cyclopentadienylhydroxomethylaminomolybdenum(IV) hexafluorophosphate, (f) bis- π-cyclopentadienylethylchloromolybdenum(IV), (g) bis- π-cyclopentadienyldichloroniobium(IV) at $\mathrm{Nb}(1)$, and (h) at $\mathrm{Nb}(2)$, (i) bis- π cyclopentadienyldichloromolybdenum(V) tetrafluoroborate, (j) μ-oxo-bis [bis- π-cyclopentadienylchloroniobium (V)] tetrafluoroborate, (k) bis- π-cyclopentadienyldichlorozirconium (IV) at $\mathrm{Zr}(1)$, (l) at $\mathrm{Zr}(2)$ (minor component), and (m) at $\mathrm{Zr}(2)$ (major component), (n) bis- π-cyclopentadienyldifluorozirconium(IV) (Bush \& Sim, 1971), (o) bis- π-cyclopentadienyldiiodozirconium(IV) (Bush \& Sim, 1971), (p) bis- π-cyclopentadienylchlorotriphenylsilylzirconium(IV) (Muir, 1971).
$2 \cdot 47 \AA$, whereas the lengths of the ring normals decrease very significantly from $2 \cdot 19$ to $1 \cdot 98 \AA$.

The elements zirconium, niobium, and molybdenum have almost identical (Allred \& Rochow, 1958) electronegativities; therefore in the absence of other factors the $\mathrm{M}-\mathrm{Cl}$ bond lengths might indicate that the metal radii with respect to the $\mathrm{M}-\mathrm{X}$ bonds are about equal. However, if the $\mathrm{Mo}-\mathrm{C}$ and $\mathrm{Zr}-\mathrm{Si}$ bonds in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$ and $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrClSi}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ (Muir, 1971) respectively are examined, and if it is assumed that for both bonds the lengths can be represented as the sums of the respective covalent radii with an appropriate electronegativity correction, then the radius of Zr appears to be about $0.2 \AA$ greater than that of Mo, consistent with the differences in radii derived from the lengths of the ring normals in these complexes. Further, the covalent radius of Mo for Mo-X bonds is the same when derived from the $\mathrm{Mo}-\mathrm{C}, \mathrm{Mo}-\mathrm{N}, \mathrm{Mo}-\mathrm{Cl}, \mathrm{Mo}-\mathrm{Br}$ and $\mathrm{Mo}-\mathrm{Sn}$ bonds taking into account electronegativity differences, although the $\mathrm{Mo}-\mathrm{O}$ bond in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{OH}) \mathrm{NH}_{2} \mathrm{CH}_{3}$ is rather shorter than would be predicted on this basis. It is inferred therefore that the apparent contraction of the $\mathrm{Zr}-\mathrm{Cl}$ bond (and the similar but possibly lesser contraction in the Ti-Cl bond, Table 17) cannot be adequately accounted for in terms of electronegativity differences alone, although within the Zr -halogen complexes the contraction in the apparent radius of the metal in its bonds to fluorine relative to those to chlorine and iodine may be due to the increased electronegativity difference, which results in the $\mathrm{Zr}-\mathrm{F}$ bond having greater ionic character, as suggested by Bush \& $\operatorname{Sim}(1971)$.

If an electron is withdrawn from the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}$ complex to give $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoCl}_{2}^{+}$, then the radius of the Mo atom in its bonding with the π-cyclopentadienyl system remains unchanged but the $\mathrm{Mo}-\mathrm{Cl}$ bond length shortens significantly by $0.1 \AA$. The minimal implication of this observation and the similar observations for the $\mathrm{Nb}(\mathrm{IV})$ and $\mathrm{Nb}(\mathrm{V})$ complexes is that the nonbonding electrons are intimately associated with the MX_{2} system and have little or no association with the π-cyclopentadienyl groups.

There are two possible interpretations of the overall stereochemistry of these complexes, one based entirely on steric repulsions and the other taking into account the directional properties of the non-bonding electrons.

First, if it is assumed that the non-bonding electrons have no stereochemical role the idealized structure might be seen as ferrocene-like with a near-linear MX_{2} system parallel with the cyclopentadienyl rings. This structure is perturbed by steric repulsions between the ligands X and the cyclopentadienyl groups so that the ferrocene-like part bends back and the ligands X are forced forward. The equilibrium position is determined by repulsions (a) between the ligands $\mathrm{X},(b)$ between the ligands X and the cyclopentadienyl rings, and (c) at the opposite end of the molecule to the ligand X , between the hydrogen atoms of the two rings. Thus
greater metal atom to ring distances for a given ligand $\mathrm{X}\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2},\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2},\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}\right.$, Table 17] lead to reduced ligand-ring and ring-ring repulsions and consequently to smaller ring-normal angles and larger MX_{2} angles. Shorter M-X bonds for a given ligand X [see $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}$ and
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2}^{+}$] lead to increased ligand-ligand and ligand--ring repulsions and hence to larger MX_{2} angles. Smaller ligands X [see
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\pi-\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Re}\left(\mathrm{CH}_{3}\right)_{2}$ and $\left.\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}\right]$ reduce ligand-ligand and ligand-ring repulsions giving smaller MX_{2} angles and larger ring-normal angles. All the data in Table 17 are consistent with this steric constraint approach except perhaps the 20e
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}(\mathrm{NO})\left(\sigma-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ with long metal-ring contacts and unchanged metal- σ-carbon bond length, suggesting that the additional electrons are associated with anti-bonding metal-ring orbitals rather than with the MX_{2} system. In this complex, although the metal-ring contact is increased to about the value found in the Zr complexes (thus reducing ring-ligand repulsions), the MX_{2} angle remains within the range expected for the $\operatorname{Mo}(\mathrm{IV}) d^{2}$ complexes and does not expand to the values found in $\mathrm{Zr}(\mathrm{IV}) d^{0}$ complexes. This could reflect the steric role of the non-bonding pair of electrons. It is also perhaps a little surprising that the MX_{2} angles are little perturbed by the bulky ligands in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Zr}(\mathrm{Cl}) \mathrm{Si}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ (Muir, 1971) and $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoBr}\left(\mathrm{SnBr}_{3}\right)$ (Cameron \& Prout, 1972).
If the non-bonding electrons have directional properties, there is an immediate conflict between the interpretation of these properties in relation to the chemistry (Ballhausen \& Dahl, 1961) and the stereochemistry (Alcock, 1967) (Fig. 1).
The evidence of the MX_{2} bond angle in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX}_{2}$ systems is consistent only with sterically significant non-bonding electrons occupying an Alcocktype orbital lying outside the MX_{2} angle and is quite contrary to the occupancy of a Ballhausen-type orbital. If it is assumed that the primary stereochemical feature of the molecule is the MX_{2} angle, determined by the lone-pair bond-pair repulsions between the non-bonding electrons and those of the $\mathrm{M}-\mathrm{X}$ bonds, then the less significant details can be explained as steric consequences of these angles using arguments similar to those outlined above. This non-bonding electron approach to the stereochemistry is thought to be the more satisfactory because of (1) the small non-overlapping ranges of MX_{2} angle, (2) the general observation that non-bonding electrons without steric significance are rarities in covalent molecules. Green, Green \& Prout (1972) have attempted to reconcile the apparent conflict between chemistry and stereochemistry to give a unified approach to the electronic structure. From the strong similarities between the photoelectron spectrum of ferrocene and $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$ it seemed to them reasonable to generate the M.O.'s for the bent hydride system by 'bending' ferrocene to $C_{2 v}$ symmetry. The resulting M.O. diagram shows that the essentially
non-bonding $e_{2 g}$ and $a_{1 g}$ orbitals of ferrocene become the $3 a, 2 b$ and $4 a$ orbitals of the bent system. If the $4 a$ and $3 a$ orbitals, essentially $d_{x^{2}-y^{2}}$ and $d_{z^{2}}$ in character, can mix to give two orbitals ψ_{A} and ψ_{B} (Fig. 1), ψ_{A} resembling the $\psi_{C^{\prime \prime}}$ of Alcock and ψ_{B} the $\psi_{B^{\prime}}$ of Ballhausen in their localization, it can then be argued that in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX}_{2}$ complexes it is ψ_{B} together with the $2 b_{1}$ orbital that are engaged in the bonding to X , and it is ψ_{A} which, as the next lowest energy orbital, accommodates the non-bonding electrons. In a complex with three ligands (e.g. $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoH}_{3}^{+}$or a metal-metal bonded dimer of the form
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}\left(\mu-\mathrm{X}_{2}\right) \mathrm{M}^{\prime} \mathrm{L}_{n}$ where X and L are ligands and M and M^{\prime} are the same or different metals) ψ_{A}, ψ_{B} and $2 b_{1}$ all form bonding M.O.'s.

In describing the $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2} \mathrm{O}^{2+}\right.$ cation it was necessary to invoke the concept of π-bonding between metal and oxygen. Now that the symmetry of the vacant low-energy orbital in the MX_{2} plane of the d^{0} complexes is defined, it can be seen that it would permit a bonding interaction with the oxygen p-lone pairs and that the observed torsion angle about the $\mathrm{Nb}-\mathrm{O}-\mathrm{Nb}$ bond is very close to the value expected from the proposed model.

The π-acceptor nature of ψ_{A} may also be involved in the apparent contraction of the metal radius, as deduced from the metal-halogen bonds, in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MCl}_{2}, \mathrm{M}=\mathrm{Mo}, \mathrm{Nb}, \mathrm{Zr}$. The smaller electronelectron repulsion which is associated with a vacant ψ_{A} orbital will be reinforced by delocalization of the halogen p-lone pairs into that orbital, resulting in a shortening and strengthening of the metal-halogen bond across the series $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoCl}_{2},\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{NbCl}_{2}$, $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrCl}_{2}$. These effects will be in addition to the shortening noted by Bush \& Sim (1971) in the series $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ZrX}_{2}, \mathrm{X}=\mathrm{I}, \mathrm{Cl}, \mathrm{F}$, attributed to the increasing ionic character of the bond.

We are greatly indebted to Drs M. L. H. and J. C. Green for many valuable discussions and to Dr M. L. H . Green and his coworkers for the preparation of materials. We also thank the Science Research Council (U.K.) for post-doctoral assistantships to T.S.C. and R.A.F.

References

Alcock, N. W. (1967). J. Chem. Soc. (A), pp. 2001-2009. Allred, A. L. \& Rochow, E. G. (1958). J. Inorg. Nucl. Chem. 5, 264-268.
Ariyaratne, J. K. P., Bierrum, A. M., Green, M. L. H., Ishaq, M., Prout, C. K. \& Swanwick, M. G. (1969). J. Chem. Soc. (A), pp. 1309-1321.

Ballhausen, C. J. \& Dahl, J. P. (1961). Acta Chem. Scand. 15, 1333-1336.
Benfield, F. W. S. \& Green, M. L. H. (1974a). J. Chem. Soc. Dalton, pp. 1244-1249.
Benfield, F. W. S. \& Green, M. L. H. (1974b). J. Chem. Soc. Dalton, pp. 1324-1331.
Bennett, M. J. \& Mason, R. (1963). Proc. Chem. Soc. pp. 273-274.
Bush, M. A. \& Sim, G. A. (1971). J. Chem. Soc. (A), pp. 2225-2229.
Calderon, J. L., Cotton, F. A. \& Legzdins, P. (1969). J. Amer. Chem. Soc. 91, 2528-2535.

Cameron, T. S. \& Prout, C. K. (1972). J. Chem. Soc. Dalton, pp. 1447-1449.
Cameron, T. S., Prout, C. K., Rees, G. V., Green, M. L. H., Joshi, K. K., Davies, G. R., Kilbourn, B. T., Braterman, P. S. \& Wilson, V. A. (1971). Chem. Commun. pp. 14-15.
Cheetham, A. K. (1974). In preparation.
Cooper, R. L. \& Green, M. L. H. (1967). J. Chem. Soc. (A), pp. 1155-1160.

Cotton, F. A. \& Takats, J. (1970). J. Amer. Chem. Soc. 92, 2353-2358.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Davies, B. R. \& Bernal, I. (1971). J. Organometal. Chem. 30, 75-87.
Davies, G. R. \& Kilbourn, B. T. (1971). J. Chem. Soc. (A), pp. 87-90.
Douglas, W. E. \& Green, M. L. H. (1972). J. Chem. Soc. Dalton, pp. 1796-1800.
Ford, G. (1969). D. Phil. thesis, Oxford.
Green, J. C., Green, M. L. H. \& Prout, C. K. (1972). Chem. Commun. pp. 421-422.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 209 et seq. Birmingham: Kynoch Press.
Knox, J. R. \& Prout, C. K. (1969). Acta Cryst. B25, 2014-2022.
Mason, R. \& Gerloch, M. (1965). J. Chem. Soc. pp. 296304.

Muir, K. M. (1971). J. Chem. Soc. (A), pp. 2663-2666.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Prout, C. K., Allison, G. B., Delbaere, L. T. J. \& Gore, E. (1972). Acta Cryst. B28, 3043-3056.

Prout, C. K. \& Kamenar, B. (1970). J. Chem. Soc. (A), pp. 2379-2384.
Rollett, J. S. (1969). In Crystallographic Computing, edited by F. R. Ahmed, pp. 169-172. Copenhagen: Munksgaard.
Sheldrick, G. M. (1972). Personal communication.
Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1970). Personal communication.
Waser, J. (1963). Acta Cryst. 16, 1091-1094.
Wheatley, P. J. (1967). In Perspectives in Structural Chemistry, edited by J. D. Dunitz and J. A. Ibers, Vol. I, p. 1. London: John Wiley.

[^0]: * Present address: New University of Ulster, Coleraine, County Londonderry, Northern Ireland.

[^1]: * These tables have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30477 (104 pp., 2 microfiches). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 11 NZ, England.
 \dagger The initials following the compound name indicate the author largely associated with the practical work.

